MATH 3060 Assignment 1 solution
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The Fourier series converges to —7/2 when z is an odd multiple of
7. The fourier series converges to f1 elsewhere.

(b) Graph:



—— o 209—o ~———
o - ™ 2m
- 5 o—to —»
1" 1 /0
= — 2dr — — d
“= o 0 YT o o v
1
2
1 (" 1 /[
ay, = — 2cosnxdx — — cos nxdx
i 0 iy —r
=0
1/ 10
b, = — 2sinnxdr — — sin naxdx
™ 0 Vs —r
3@ = (="
B nmw
Therefore
16—
~ =+ — ———sin(2n — 1)z.
fa(x) 5 + 72 @) sin(2n — 1)z



The limit of the Fourier series is the 27 periodic function
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The limit of the Fourier series is the 27 periodic function

{639”, x € (—m,m)

cosh3m, z=m
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not be touching the z-axis.)

2. (a) Let Ly, Ly > 0 be such that |f(z) - f(y)| < Lilz =yl [9(z) —g(y)| <
Lojz — y|. Also note that since f, g are continuous on [a, b], we can
find M > 0 so that |f(z)| < M, |g(x)] < M for x € [a,b]. Now, for
x,y € la, b], we have

|f(@)g(z)=f(W)g(y)| < [f(@)llg(x)=g@W)+]gW)IIf (@)= f ()| < M(L1+La)|z+y|

So gf satisfies the Lipschitz condition with constant M (Ls + L1).

(b) Let Ly,L2 > 0 be as in part (a). For any z,y € [a,b] we have for
x,y € la,b], we have

lgo f(x) —go f(y)| < La|f(x) = f(y)| < LaLa]z —yl.

So g o f satisfies the Lipschitz condition with constant Lo L.
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Since f is differentiable with bounded derivative on (0, 27), f is lipschitz
continuous at every point in (0, 27) , so the Fourier series converges point-
wise to f on (0.27). The limit at 0 is —.
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4. First, b, = 0 for all n > 0 because f; is odd. On the other hand,

Y
a0 = o i} fi(z)dz

I
S|
cﬁ‘
[
—
Nk
u
S

2 s
ap = 7/ —x cos nxdx
0

™

2(1 = (=1)")

n2m

Therefore,
T 4 1
f](x) ~ —5 + ;; m COS(2’I’L — 1)(E

fl is piecewise differentiable with bounded derivarives, so it is Lipschitz

continuous at every point, so its Fourier series converges to it everywhere.
2

In particular, the limit at 0 is 0. (i.e. T =Y ", m)
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