Def A function f is called d'fleventiable at c if $f'(c) := \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exicts. f'(c) is called the devivative of f at c

1. Show that
$$f(x_1 = |x|)$$
, $x \in R$ is not differentiable at 0.
Pf: Note that $f(x) = \begin{cases} x, & x \ge 0, \\ -x, & x = 0. \end{cases}$
Then $\frac{f(x) - f(x)}{x - 0} = \frac{f(x)}{x} = \begin{cases} 1, & x \ge 0, \\ -1, & x \ge 0. \end{cases}$
Thus $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x - 0} = 1$
and $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x - 0} = -1$
Therefore $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x - 0} = -1$
Therefore $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x - 0} = -1$
Hence f is mot differentiable at 0 .

2. Show that
$$f(x) = x^{\frac{1}{2}}$$
, $x \in \mathbb{R}$ is not differentiable
at 0.
Pf: Note that $\frac{f(x) - f(y)}{x - 0} = \frac{f(x)}{x} = \frac{x^{\frac{1}{2}}}{x} = x^{-\frac{1}{2}}$.
Suppose $\int_{x \to 0}^{1} x^{-\frac{1}{2}} = \int_{x \to 0}^{1} x = \frac{x^{\frac{1}{2}}}{x} = x^{-\frac{1}{2}}$.
Take $x_{0} = \frac{1}{2}$. Exists.
Take $x_{0} = \frac{1}{2}$. Then $x_{0} \Rightarrow 0$ as $n \Rightarrow 0$.
By Sequented Criterion,
 $x^{-\frac{1}{2}} = n^{\frac{1}{2}} \Rightarrow L$ as $n \Rightarrow 0$.
But $n^{\frac{1}{2}} \Rightarrow 0$ as $n \Rightarrow 0$.
But $n^{\frac{1}{2}} \Rightarrow 0$ as $n \Rightarrow 0$.
Contradiction!
3(a) Show that $f(x) = \int_{0}^{1} x^{\frac{1}{2}}$, x retinad
at 0 and $f(0) = 0$.
Pf: Note that $\frac{f(x) - f(w)}{x - 0} = \frac{f(w)}{x} = \int_{0}^{1} x$. x retinad
For any $\Sigma > 0$, if $|x| < \Sigma$,
 $\left(\frac{f(w) - f(w)}{x - 0}\right) < \Sigma$ in both retinal and

Thus
$$\int_{x>0}^{t} \frac{f(x)-f(x)}{x-o} = 0$$

Hence $f(o) = 0$
(b) When about $f(x) = \int_{0}^{\infty} x$, x rational, ?
(chim: $f(o) := \int_{x>0}^{t} \frac{f(x)-f(o)}{x-o} does not exist.$
Pf: Suppose not.
Write $\int_{x>0}^{t} \frac{f(x)-f(o)}{x-o} = L$.
Note that $\frac{f(u)-f(o)}{x-o} = \frac{f(u)}{x} = \int_{0}^{t} \frac{f(u)}{x}$ rational.
By density of Ω , there exists a sequence $(x_u) \in \Omega$ sit. $x_u \to 0$ as $u \to \infty$.
Then $\frac{f(u_v)-f(o)}{x_{u-0}} \to 1$ as $u \to \infty$.
By density of $R \land \Omega$, there exists a sequence $(y_u) \in \Omega$ sit. $y_u \to 0$ as $u \to \infty$.
By density of $R \land \Omega$, there exists a sequence $(y_u) \in R \land \Omega$, there exists a sequence $(y_u) \in R \land \Omega$ sit. $y_u \to 0$ as $u \to \infty$.
By density of $R \land \Omega$, there exists a sequence $(y_u) \in R \land \Omega$ sit. $y_u \to 0$ as $u \to \infty$.
Then $\frac{f(x_u) - f(u)}{x_{u-0}} \to 0$ as $u \to \infty$.
Due to y Sequential Criterian,
 $\frac{f(u_v) - f(u)}{x_{u-0}} \to L$ as $u \to \infty$.

Then
$$1 = L = 0$$

Contradiction !
4(m) Show that $f(x) = \int x^2 \sin \frac{1}{x}$, $x \neq 0$,
differentiable act 0 and $f(0) = 0$.
Pf: Note that $\frac{f(x) - f(0)}{x - 0} = \frac{f(y)}{x} = \frac{x^2 \sin \frac{1}{x}}{x} = x \sin \frac{1}{x}$
and $-1 \leq \sin \frac{1}{x} \leq 1$.
Then $-x \leq \frac{f(x) - f(0)}{x - 0} \leq x$.
Since $\lim_{x \to 0} x = \lim_{x \to 0} (-x) = 0$, by Squeeze Theorem,
 $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 0$.
Hence, $f(0) = 0$.
(b) What about $f(x) = \int x \sin \frac{1}{x}$, $x \neq 0$.
(claim: $f'(0) = \lim_{x \to 0} \frac{f(y) - f(y)}{x - 0}$ does not exict.
Pf: Suppose not.

Write
$$\lim_{x \to 0} \frac{+\pi x - \pi \omega}{x - \omega} = L$$

Note that
$$f(w) - f(v) = \frac{f(w)}{x} = \frac{f(w)}{x} = \frac{f(w)}{x} = \frac{f(w)}{x} = \frac{f(w)}{x} = \frac{f(w)}{x} = \frac{f(w)}{x}$$
.
Take $f(w) = \frac{f(w)}{x(v-v)} = \sin 2\pi v = 0 \Rightarrow 0$ as $n \Rightarrow 0$.
Take $f(w) = \frac{f(w)}{(w+\frac{1}{2})\pi}$.
Then $\frac{f(w)}{(w+\frac{1}{2})\pi} = \sin (w+\frac{1}{2})\pi = 1 \Rightarrow 1$ as $n \Rightarrow \infty$.
Since $x_{v_{1}} \Rightarrow 0$ and $f(v) \Rightarrow 0$ as $n \Rightarrow \infty$.
By Sequential Criterion,
 $\frac{f(x_{w} - f(v))}{x(v-v)} \Rightarrow L$ and $\frac{f(w)}{y(v-v)} = \frac{f(w)}{y(v-v)}$.
Thurefore $0 = L = 1$.
Contradiction!

S(a) Improve
$$f'(c) := \lim_{x \to c} \frac{1}{x - c}$$
 excess
Show that $f'(c) := \lim_{n \to \infty} n [f(c + \frac{1}{n}) - f(c)]$.
Pf: Take $\pi_n = c + \frac{1}{n}$. Then $\pi_n \Rightarrow c$ as $n \Rightarrow \infty$.
Since $f'(c) := \lim_{x \to c} \frac{f(\omega) - f(c)}{x - c}$,

by Sequential Criterion,

$$f'_{(c)} = \lim_{n \to \infty} \frac{f(x_{w} - f(c))}{x_{n-c}} = \lim_{n \to \infty} \frac{f(c+\frac{1}{n}) - f(c)}{c+\frac{1}{n} - c}$$

$$= \lim_{n \to \infty} n \left[f(c+\frac{1}{n}) - f(c) \right]$$

(b) Give an example to show the existence
of firm
$$n [f(c+\frac{1}{n}) - f(c)]$$
 does not imply
f(c) exists.

Example 1

$$f(x) = |x|$$
, $c = 0$.
Then $\lim_{n \to \infty} n[f(c+\frac{1}{n}) - f(c)] = \lim_{n \to \infty} nf(\frac{1}{n})$
 $= \lim_{n \to \infty} n \cdot \frac{1}{n} = 1$.
By Q1, $f(o)$ does not exists.

The lim
$$n[f(c+\frac{1}{n}) - f(c)] = \lim_{n \to \infty} nf(\frac{1}{n}) = \lim_{n \to \infty} n \cdot \frac{1}{n} = 1$$