THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics
MATH2068 Mathematical Analysis II (Spring 2023)
Suggested Solution of Homework 7

Q2
When $x=0$, it is trivial.
When $x \neq 0, \lim _{n \rightarrow \infty} \frac{n x}{1+n^{2} x^{2}}=\lim _{n \rightarrow \infty} \frac{x / n}{1 / n^{2}+x^{2}}=\frac{0}{x^{2}}=0$.
Q12
Fix $\epsilon>0$. By AP, there exists $N \in \mathbb{N}$ such that for any $n>N, \frac{1}{n a}<\epsilon$. For any $n>N$, for $x \in[a, \infty], 0<\frac{n x}{1+n^{2} x^{2}}<\frac{n x}{n^{2} x^{2}}=\frac{1}{n x} \leq \frac{1}{n a}<\epsilon$. Hence, $\frac{n x}{1+n^{2} x^{2}}$ converges uniformly to 0 on $[a, \infty]$.
Take $x_{n}=\frac{1}{n}$. Then $\frac{n x_{n}}{1+n^{2} x_{n}^{2}}=\frac{1}{2}$ for any $n \in \mathbb{N}$. Hence, $\frac{n x}{1+n^{2} x^{2}}$ does not converge uniformly to 0 on $[0, \infty]$.

Q22
Fix $\epsilon>0$. By AP, there exists $N \in \mathbb{N}$ such that for any $n>N, \frac{1}{n}<\epsilon$. For any $n>N$, for $x \in \mathbb{R},\left|f_{n}(x)-f(x)\right|=\frac{1}{n}<\epsilon$. Hence, $f_{n}$ converges uniformly to $f$ on $\mathbb{R}$.
Note that $f_{n}^{2}(x)=x^{2}+\frac{2 x}{n}+\frac{1}{n^{2}}$. Clearly, $f_{n}^{2}$ converges pointwisely to $x^{2}$. By the uniqueness of the limit, it suffices to show $f_{n}$ does not converge uniformly to $x^{2}$ on $\mathbb{R}$. Take $x_{n}=n$. Then $\left|f_{n}^{2}\left(x_{n}\right)-x_{n}^{2}\right|=2+\frac{1}{n^{2}}>2$ for any $n \in \mathbb{N}$. Hence, $f_{n}$ does not converge uniformly to $f$ on $\mathbb{R}$.

