THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2068 Mathematical Analysis II (Spring 2023) Suggested Solution of Homework 6 Q18

Let $||f||_{\infty} := \sup\{f(x) : x \in [a, b]\}$. Since $f \ge 0$, if $||f||_{\infty} = 0$, then $f \equiv 0$. The equality holds trivially.

Suppose $||f||_{\infty} > 0$. Dividing by $||f||_{\infty} > 0$ on both sides and replacing f by $\frac{f}{||f||_{\infty}}$, without loss of generality, we can assume $0 \le f \le 1$ and $||f||_{\infty} = 1$.

On one hand, since $f^n \leq 1$, then $M_n \leq (b-a)^{1/n}$, which implies $\limsup_{n\to\infty} M_n \leq 1$. On the other hand, for any $\epsilon > 0$, since f is continuous, there exists a subinterval $[c, d] \subset [a, b]$ such that $f \geq 1 - \epsilon$ on [c, d]. Since $f^n \geq 0$ on [a, b] and $f^n \geq (1 - \epsilon)^n$ on [c, d], then $M_n \geq (1 - \epsilon)(d - c)^{1/n}$, which implies $\liminf_{n\to\infty} M_n \geq 1 - \epsilon$. Since ϵ is arbitrary, $\liminf_{n\to\infty} M_n \geq 1$. Hence, $\lim_{n\to\infty} M_n = 1 = ||f||_{\infty}$.

Q21

i.e.,

- (a) It follows from the fact $(tf \pm g) \ge 0$ and the monotonicity of integrals.
- (b) Fix t > 0. By (a),

$$0 \le \int_{a}^{b} (tf \pm g) = t^{2} \int_{a}^{b} f^{2} \pm 2t \int_{a}^{b} fg + \int_{a}^{b} g^{2}.$$

Since t > 0,

$$\pm 2\int_{a}^{b} fg \leq t\int_{a}^{b} f^{2} + \frac{1}{t}\int_{a}^{b} g^{2},$$

$$2\left|\int_{a}^{b} fg\right| \leq t \int_{a}^{b} f^{2} + \frac{1}{t} \int_{a}^{b} g^{2}.$$

(c) Suppose $\int_a^b f^2 = 0$. By (b),

$$2\left|\int_{a}^{b} fg\right| \leq \frac{1}{t} \int_{a}^{b} g^{2}$$

for any t > 0. Letting $t \to \infty$ gives us $\left| \int_a^b fg \right| = 0$, which implies $\int_a^b fg = 0$.

(d) By triangle inequality, $\left|\int_{a}^{b} fg\right| \leq \int_{a}^{b} |fg|$, which implies the first inequality. If $\int_{a}^{b} f^{2} = 0$, replacing f and g by |f| and |g| in (c) gives $\int_{a}^{b} |fg| = 0$. The second inequality holds trivially. The same argument works in the case $\int_{a}^{b} g^{2} = 0$. Suppose $\int_{a}^{b} f^{2} > 0$ and $\int_{a}^{b} g^{2} > 0$. Replace f and g by |f| and |g| in (b), we attain

$$2\int_{a}^{b} |fg| \le t\int_{a}^{b} f^{2} + \frac{1}{t}\int_{a}^{b} g^{2}$$

for any t > 0. In particular, taking $t = \left(\frac{\int_a^b g^2}{\int_a^b f^2}\right)^{1/2}$ gives us

$$2\int_{a}^{b} |fg| \le 2\left(\int_{a}^{b} f^{2}\right)^{1/2} \left(\int_{a}^{b} g^{2}\right)^{1/2}.$$