THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics
MATH2068 Mathematical Analysis II (Spring 2023)
Suggested Solution of Homework 6

Q18
Let $\|f\|_{\infty}:=\sup \{f(x): x \in[a, b]\}$. Since $f \geq 0$, if $\|f\|_{\infty}=0$, then $f \equiv 0$. The equality holds trivially.
Suppose $\|f\|_{\infty}>0$. Dividing by $\|f\|_{\infty}>0$ on both sides and replacing $f$ by $\frac{f}{\|f\|_{\infty}}$, without loss of generality, we can assume $0 \leq f \leq 1$ and $\|f\|_{\infty}=1$.
On one hand, since $f^{n} \leq 1$, then $M_{n} \leq(b-a)^{1 / n}$, which implies $\lim \sup _{n \rightarrow \infty} M_{n} \leq 1$.
On the other hand, for any $\epsilon>0$, since $f$ is continuous, there exists a subinterval $[c, d] \subset[a, b]$ such that $f \geq 1-\epsilon$ on $[c, d]$. Since $f^{n} \geq 0$ on $[a, b]$ and $f^{n} \geq(1-\epsilon)^{n}$ on $[c, d]$, then $M_{n} \geq(1-\epsilon)(d-c)^{1 / n}$, which implies $\liminf _{n \rightarrow \infty} M_{n} \geq 1-\epsilon$. Since $\epsilon$ is arbitrary, $\liminf _{n \rightarrow \infty} M_{n} \geq 1$.
Hence, $\lim _{n \rightarrow \infty} M_{n}=1=\|f\|_{\infty}$.
Q21
(a) It follows from the fact $(t f \pm g) \geq 0$ and the monotonicity of integrals.
(b) Fix $t>0$. By (a),

$$
0 \leq \int_{a}^{b}(t f \pm g)=t^{2} \int_{a}^{b} f^{2} \pm 2 t \int_{a}^{b} f g+\int_{a}^{b} g^{2}
$$

Since $t>0$,

$$
\pm 2 \int_{a}^{b} f g \leq t \int_{a}^{b} f^{2}+\frac{1}{t} \int_{a}^{b} g^{2}
$$

i.e.,

$$
2\left|\int_{a}^{b} f g\right| \leq t \int_{a}^{b} f^{2}+\frac{1}{t} \int_{a}^{b} g^{2}
$$

(c) Suppose $\int_{a}^{b} f^{2}=0$. By (b),

$$
2\left|\int_{a}^{b} f g\right| \leq \frac{1}{t} \int_{a}^{b} g^{2}
$$

for any $t>0$. Letting $t \rightarrow \infty$ gives us $\left|\int_{a}^{b} f g\right|=0$, which implies $\int_{a}^{b} f g=0$.
(d) By triangle inequality, $\left|\int_{a}^{b} f g\right| \leq \int_{a}^{b}|f g|$, which implies the first inequality. If $\int_{a}^{b} f^{2}=0$, replacing $f$ and $g$ by $|f|$ and $|g|$ in (c) gives $\int_{a}^{b}|f g|=0$. The second inequality holds trivially. The same argument works in the case $\int_{a}^{b} g^{2}=0$.
Suppose $\int_{a}^{b} f^{2}>0$ and $\int_{a}^{b} g^{2}>0$. Replace $f$ and $g$ by $|f|$ and $|g|$ in (b), we attain

$$
2 \int_{a}^{b}|f g| \leq t \int_{a}^{b} f^{2}+\frac{1}{t} \int_{a}^{b} g^{2}
$$

for any $t>0$. In particular, taking $t=\left(\frac{\int_{a}^{b} g^{2}}{\int_{a}^{b} f^{2}}\right)^{1 / 2}$ gives us

$$
2 \int_{a}^{b}|f g| \leq 2\left(\int_{a}^{b} f^{2}\right)^{1 / 2}\left(\int_{a}^{b} g^{2}\right)^{1 / 2}
$$

