THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics
MATH2068 Mathematical Analysis II (Spring 2023)
Suggested Solution of Homework 5

Q2
For any partition P of $[0,1]$, by density of $\mathbb{Q}^{c}, \inf \left\{h(x): x \in\left[x_{k-1}, x_{k}\right]\right\}=0$ for any k. Then $L(h ; P)=0$ for any partition P. Therefore, $L(h)=0$. By the density of \mathbb{Q}, $\sup \left\{h(x): x \in\left[x_{k-1}, x_{k}\right]\right\} \geq 1$ for any k. Then $U(h ; P) \geq 1$ for any partition P. Therefore, $U(h) \geq 1$. Since $L(h ; P) \neq U(h: P), h$ is not Riemann integrable on $[0,1]$.

Q8
Suppose not, i.e., there exists some $x \in[a, b]$ such that $f(x)>0$. Since f is continuous at x, there exists some $\delta>0$ such that $(x-\delta, x+\delta) \subset[a, b]$ and $|f(y)-f(x)|<\frac{f(x)}{2}$ for any $y \in(x-\delta, x+\delta)$. Then $f(y)>\frac{f(x)}{2}$ for any $y \in(x-\delta, x+\delta)$. Thus, $f \geq \frac{f(x)}{2} \chi_{(x-\delta, x+\delta)}$, which implies $\int_{a}^{b} f \geq \int_{a}^{b} \frac{f(x)}{2} \chi_{(x-\delta, x+\delta)}=\delta f(x)>0$. Contradiction!

Q12
Fix $\epsilon>0$. By Archimedean Property, there exists some $n \in \mathbb{N}$ such that $\frac{2}{(2 n-1 / 2) \pi}<\epsilon$. Let $f(x)=1$ for $x \in\left[0, \frac{1}{(2 n+1 / 2) \pi}\right]$ and $f(x)=\sin \left(\frac{1}{x}\right)$ for $x \in\left[\frac{1}{(2 n+1 / 2) \pi}, 1\right]$. Then f is continuous on $[0,1]$ and $f \geq g$. Similarly, let $h(x)=-1$ for $x \in\left[0, \frac{1}{(2 n-1 / 2) \pi}\right]$ and $h(x)=\sin \left(\frac{1}{x}\right)$ for $x \in\left[\frac{1}{(2 n-1 / 2) \pi}, 1\right]$. Then h is continuous on $[0,1]$ and $g \geq h$. Since f, h are continuous on $[0,1]$, they are Riemann integrable on $[0,1]$. Moreover, $h \leq g \leq f$ and $\int_{0}^{1}(f-h) \leq \frac{2}{(2 n-1 / 2) \pi}<\epsilon$. By Squeeze Theorem, g is Riemann integrable on $[0,1]$.

