THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2068 Mathematical Analysis II (Spring 2023) Suggested Solution of Homework 5 Q2

For any partition P of [0,1], by density of \mathbb{Q}^c , $\inf\{h(x) : x \in [x_{k-1}, x_k]\} = 0$ for any k. Then L(h; P) = 0 for any partition P. Therefore, L(h) = 0. By the density of \mathbb{Q} , $\sup\{h(x) : x \in [x_{k-1}, x_k]\} \ge 1$ for any k. Then $U(h; P) \ge 1$ for any partition P. Therefore, $U(h) \ge 1$. Since $L(h; P) \ne U(h : P)$, h is not Riemann integrable on [0, 1].

Q8

Suppose not, i.e., there exists some $x \in [a, b]$ such that f(x) > 0. Since f is continuous at x, there exists some $\delta > 0$ such that $(x - \delta, x + \delta) \subset [a, b]$ and $|f(y) - f(x)| < \frac{f(x)}{2}$ for any $y \in (x - \delta, x + \delta)$. Then $f(y) > \frac{f(x)}{2}$ for any $y \in (x - \delta, x + \delta)$. Thus, $f \ge \frac{f(x)}{2}\chi_{(x - \delta, x + \delta)}$, which implies $\int_a^b f \ge \int_a^b \frac{f(x)}{2}\chi_{(x - \delta, x + \delta)} = \delta f(x) > 0$. Contradiction!

Q12

Fix $\epsilon > 0$. By Archimedean Property, there exists some $n \in \mathbb{N}$ such that $\frac{2}{(2n-1/2)\pi} < \epsilon$. Let f(x) = 1 for $x \in [0, \frac{1}{(2n+1/2)\pi}]$ and $f(x) = \sin(\frac{1}{x})$ for $x \in [\frac{1}{(2n+1/2)\pi}, 1]$. Then f is continuous on [0,1] and $f \ge g$. Similarly, let h(x) = -1 for $x \in [0, \frac{1}{(2n-1/2)\pi}]$ and $h(x) = \sin(\frac{1}{x})$ for $x \in [\frac{1}{(2n-1/2)\pi}, 1]$. Then h is continuous on [0,1] and $g \ge h$. Since f, h are continuous on [0,1], they are Riemann integrable on [0,1]. Moreover, $h \le g \le f$ and $\int_0^1 (f-h) \le \frac{2}{(2n-1/2)\pi} < \epsilon$. By Squeeze Theorem, g is Riemann integrable on [0,1].