THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics
MATH2068 Mathematical Analysis II (Spring 2023)
Suggested Solution of Homework 4

Q11
Let $f(x)=\ln x$. By induction, one can show that $f^{(n)}(x)=\frac{(-1)^{n-1}}{(n-1)!(x+1)^{n}}$ for any $n \in \mathbb{N}$. By Taylor's Theorem, for any $x \in(0,1]$ and $n \in \mathbb{N}$, there exists some $c \in(0, x)$ such that $\ln x=f(x)=f(0)+f^{\prime}(0) x+\cdot+\frac{f^{(n)}(0)}{n!} x^{n}+\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}=x+\cdot+(-1)^{n-1} \frac{x^{n}}{n}+\frac{(-1)^{n}}{(c+1)^{n}} \frac{x^{n+1}}{n+1}$. Therefore, $\left|\ln x-\left(x+\cdot+(-1)^{n-1} \frac{x^{n}}{n}\right)\right|=\frac{x^{n+1}}{(n+1)(c+1)^{n}}<\frac{x^{n+1}}{n+1}$. Taking $x=0.5$ and $n=7$ gives us the approximation of $\ln 1.5$ wuth error less than 0.001 .

Q17
The tangent line to the graph at $(c, f(c))$ is given by $\left(x, f(c)+f^{\prime}(c)(x-c)\right)$. By Taylor's Theorem, for any $x \in I$, there exists some y between c and x such that $f(x)-\left[f(c)+f^{\prime}(c)(x-\right.$ $c)]=\frac{f^{\prime \prime}(y)}{2}(x-c)^{2}$. By our assumption, $f^{\prime \prime}(y) \geq 0$. Thus $f(x)-\left[f(c)+f^{\prime}(c)(x-c)\right] \geq 0$, i.e., the graph of f on I is never below the tangent line to the graph at $(c, f(c))$.

