THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics
MATH2068 Mathematical Analysis II (Spring 2023)
Suggested Solution of Homework 3

Q4
Let $f(x):=\sqrt{x+1}$. Then $f^{\prime}(x)=\frac{1}{2}(x+1)^{-1 / 2}, f^{\prime \prime}(x)=-\frac{1}{4}(x+1)^{-3 / 2}$ and $f^{\prime \prime \prime}(x)=$ $\frac{3}{8}(x+1)^{-5 / 2}$. By Taylor's Theorem, for any $x>0$, there exists some $c \in(0, x)$ such that $f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(c)}{3!} x^{3}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}(c+1)^{-5 / 2}>1+\frac{x}{2}-\frac{x^{2}}{8}$. Again by Taylor's Theorem, for any $x>0$, there exists some $d \in(0, x)$ such that $f(x)=$ $f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(d)}{2!} x^{2}=1+\frac{x}{2}-\frac{x^{2}}{8}(d+1)^{-3 / 2}<1+\frac{x}{2}$.

Q8
Fix x_{0}, x with $x_{0}<x$. By Taylor's Theorem, for any $n \in \mathbb{N}$, there exits some $c_{n} \in\left(x_{0}, x\right)$ such that $R_{n}=\frac{f^{(n+1)}\left(c_{n}\right)}{(n+1)!}\left(x-x_{0}\right)^{n+1}=\frac{e^{c_{n}}}{(n+1)!}\left(x-x_{0}\right)^{n+1}$. Then $\frac{R_{n+1}}{R_{n}}=\frac{e^{c_{n+1}-c_{n}}}{n+1}\left(x-x_{0}\right) \in$ $\left(\frac{e^{x_{0}-x}}{n+1}\left(x-x_{0}\right), \frac{e^{x-x_{0}}}{n+1}\left(x-x_{0}\right)\right)$. By Squeeze Theorem, $\lim _{n \rightarrow \infty} \frac{R_{n+1}}{R_{n}}=0$. By Theoreom 3.2.11, $\lim _{n \rightarrow \infty} R_{n}=0$.

Q10
Claim: $h^{(n)}(x)=e^{-1 / x^{2}} P_{n}\left(\frac{1}{x}\right)$ where P_{n} are polynomials of degree less than 3 n . We shall prove this by induction. When $n=1, h^{\prime}(x)=e^{-1 / x^{2}} \frac{2}{x^{3}}$. Suppose the statement holds for $n=k$. When $n=k+1, h^{(k+1)}(x)=\left(h^{k}(x)\right)^{\prime}=\left(e^{-1 / x^{2}} P_{k}\left(\frac{1}{x}\right)\right)^{\prime}=e^{-1 / x^{2}}\left(\frac{2}{x^{3}} P_{k}\left(\frac{1}{x}\right)+P_{k}^{\prime}\left(\frac{1}{x}\right)\right)=$ $e^{-1 / x^{2}} P_{k+1}\left(\frac{1}{x}\right)$ where $P_{k+1}(x)=2 x^{3} P_{k}(x)+P_{k}^{\prime}(x)$.
To show $h^{(n)}(0)=0$, it suffices to show $\lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{x^{n}}=0$ for any $n \in \mathbb{N}$. We shall prove this by induction. When $n=0, \lim _{x \rightarrow 0} e^{-1 / x^{2}}=0$. Suppose the statement holds for $n \leq k$. When $n=k+1, \lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{x^{k+1}}=\lim _{y \rightarrow \infty} \frac{y^{(k+1) / 2}}{e^{y}}=\frac{k+1}{2} \lim _{x \rightarrow \infty} \frac{y^{(k-1) / 2}}{e^{y}}=\frac{k+1}{2} \lim _{x \rightarrow 0} \frac{e^{-1 / \overline{x^{2}}}}{x^{k-1}}=0$. Since $h^{(k)}(0)=0$ for any $k \in \mathbb{N}, P_{n}(x)=0$ for any $n \in \mathbb{N}$. But $f(x) \neq 0$. Hence, $R_{n}(x)$ does not converge to 0 .

