THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics
 MATH2060 Mathematical Analysis II (Spring 2023)
 Suggested Solution of Homework 4

Section 7.1

5. Let $\dot{\mathcal{P}}:=\left\{\left(I_{i}, t_{i}\right)\right\}_{i=1}^{n}$ be a tagged partition of $[a, b]$ and let $c_{1}<c_{2}$.
(a) If u belongs to a subinterval I_{i} whose tag satisfies $c_{1} \leq t_{i} \leq c_{2}$, show that $c_{1}-\|\dot{\mathcal{P}}\| \leq u \leq c_{2}+\|\dot{\mathcal{P}}\|$.
(b) If $v \in[a, b]$ and satisfies $c_{1}+\|\dot{\mathcal{P}}\| \leq v \leq c_{2}-\|\dot{\mathcal{P}}\|$, then the tag t_{i} of any subinterval I_{i} that contains v satisfies $t_{i} \in\left[c_{1}, c_{2}\right]$.

Solution. (a) Write $I_{i}=\left[x_{i-1}, x_{i}\right]$. Then $x_{i-1} \leq u, t_{i} \leq x_{i}$, and hence

$$
t_{i}-\left(x_{i}-x_{i-1}\right)=x_{i-1}-\left(x_{i}-t_{i}\right) \leq u \leq x_{i}+\left(t_{i}-x_{i-1}\right)=t_{i}+\left(x_{i}-x_{i-1}\right)
$$

Since $c_{1} \leq t_{i} \leq c_{2}$ and $0<x_{i}-x_{i-1} \leq\|\dot{\mathcal{P}}\|$, we have $c_{1}-\|\dot{\mathcal{P}}\| \leq u \leq c_{2}+\|\dot{\mathcal{P}}\|$.
(b) We can replace the tag of I_{i} by v without changing $\|\dot{\mathcal{P}}\|$. Then, since $t_{i} \in I_{i}$, it follows from (a) that

$$
c_{1}=\left(c_{1}+\|\dot{\mathcal{P}}\|\right)-\|\dot{\mathcal{P}}\| \leq t_{i} \leq\left(c_{2}-\|\dot{\mathcal{P}}\|\right)+\|\dot{\mathcal{P}}\|=c_{2}
$$

6. (a) Let $f(x):=2$ if $0 \leq x<1$ and $f(x):=1$ if $1 \leq x \leq 2$. Show that $f \in \mathcal{R}[0,2]$ and evaluate its integral.
(b) Let $h(x):=2$ if $0 \leq x<1, h(1):=3$ and $h(x):=1$ if $1<x \leq 2$. Show that $h \in \mathcal{R}[0,2]$ and evaluate its integral.

Solution. Fix $c \in \mathbb{R}$ and define $g:[0,2] \rightarrow \mathbb{R}$ by

$$
g(x)= \begin{cases}2 & \text { if } 0 \leq x<1 \\ c & \text { if } x=1 \\ 1 & \text { if } 1<x \leq 2\end{cases}
$$

We will show that, regardless of the value of c, we always have $g \in \mathcal{R}[0,2]$ and $\int_{0}^{2} g=3$.
Let $\dot{\mathcal{P}}:=\left\{\left(\left[x_{i-1}, x_{i}\right], t_{i}\right)\right\}_{i=1}^{n}$ be a tagged partition of $[0,2]$. Suppose $x_{k-1} \leq 1 \leq x_{k}$. Let $\dot{\mathcal{P}}_{1}=\left\{\left(\left[x_{i-1}, x_{i}\right], t_{i}\right)\right\}_{i=1}^{k-1}$ and $\dot{\mathcal{P}}_{2}=\left\{\left(\left[x_{i-1}, x_{i}\right], t_{i}\right)\right\}_{i=k+1}^{n}$. Then we have

$$
S(g ; \dot{\mathcal{P}})=S\left(g ; \dot{\mathcal{P}}_{1}\right)+g\left(t_{k}\right)\left(x_{k}-x_{k-1}\right)+S\left(g ; \dot{\mathcal{P}}_{2}\right)
$$

where

$$
\begin{gathered}
S\left(g ; \dot{\mathcal{P}}_{1}\right)=\sum_{i=1}^{k-1} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)=2\left(x_{k-1}-x_{0}\right)=2-2\left(1-x_{k-1}\right), \\
S\left(g ; \dot{\mathcal{P}}_{2}\right)=\sum_{i=k+1}^{n} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)=\left(x_{n}-x_{k}\right)=1-\left(x_{k}-1\right)
\end{gathered}
$$

Let $M=\max \{1,2,|c|\}$. Then

$$
\begin{aligned}
|S(g ; \dot{\mathcal{P}})-3| & \leq 2\left|1-x_{k-1}\right|+\left|g\left(t_{k}\right) \| x_{k}-x_{k-1}\right|+\left|x_{k}-1\right| \\
& \leq 2\|\dot{\mathcal{P}}\|+M\|\dot{\mathcal{P}}\|+\|\dot{\mathcal{P}}\| \\
& =(3+M)\|\dot{\mathcal{P}}\| .
\end{aligned}
$$

Now for any $\varepsilon>0$, we can take $\delta:=\varepsilon /(3+M)>0$, so that any tagged partition $\dot{\mathcal{P}}$ of $[0,2]$ with $\|\dot{\mathcal{P}}\|<\delta$ satisfies

$$
|S(g ; \dot{\mathcal{P}})-3|<(3+M) \delta=\varepsilon
$$

Therefore, $g \in \mathcal{R}[0,2]$ and $\int_{0}^{2} g=3$.
8. If $f \in \mathcal{R}[a, b]$ and $|f(x)| \leq M$ for all $x \in[a, b]$, show that $\left|\int_{a}^{b} f\right| \leq M(b-a)$.

Solution. Note that $-M \leq f(x) \leq M$ for all $x \in[a, b]$. By Example 7.1.4(a), a constant function $g(x):=k$ is Riemann integrable on $[a, b]$ and $\int_{a}^{b} g=k(b-a)$. It follows form Theorem 7.1.5 that

$$
-M(b-a)=\int_{a}^{b}-M \leq \int_{a}^{b} f \leq \int_{a}^{b} M=M(b-a)
$$

This is just $\left|\int_{a}^{b} f\right| \leq M(b-a)$.
10. Let $g(x):=0$ if $x \in[0,1]$ is rational and $g(x):=1 / x$ if $x \in[0,1]$ is irrational. Explain why $g \notin \mathcal{R}[0,1]$. However, show that there exists a sequence ($\dot{\mathcal{P}}_{n}$) of tagged partitions of $[a, b]$ such that $\left\|\dot{\mathcal{P}}_{n}\right\| \rightarrow 0$ and $\lim _{n} S\left(g ; \dot{\mathcal{P}}_{n}\right)$ exists.

Solution. Let $\mathcal{P}=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}$ be a partition of $[a, b]$. If we choose a rational $\operatorname{tag} r_{i}$ for each subinterval $\left[x_{i-1}, x_{i}\right]$, then

$$
S\left(g ;\left\{\left(\left[x_{i-1}, x_{i}\right], r_{i}\right)\right\}_{i=1}^{n}\right)=0
$$

while if we choose an irrational tag q_{i} for each subinterval $\left[x_{i-1}, x_{i}\right]$, then

$$
S\left(g ;\left\{\left(\left[x_{i-1}, x_{i}\right], q_{i}\right)\right\}_{i=1}^{n}\right) \geq 1
$$

Since $\|\mathcal{P}\|>0$ can be arbitrarily small, we have for any $L \in \mathbb{R}$, there exists $\varepsilon_{0}:=1 / 2$ such that for any $\delta>0$, there is a tagged partition $\dot{\mathcal{P}}$ of $[a, b]$ such that $\|\dot{\mathcal{P}}\|<\delta$ and

$$
|S(g ; \dot{\mathcal{P}})-L| \geq \varepsilon_{0}
$$

Hence $g \notin \mathcal{R}[0,1]$.
Finally, we let $\left(\dot{\mathcal{P}}_{n}\right)$ be a sequence of tagged partitions of $[a, b]$ defined by $\dot{\mathcal{P}}_{n}=$ $\left\{\left(\left[\frac{i-1}{n}, \frac{i}{n}\right], \frac{i}{n}\right)\right\}_{i=1}^{n}$. Then $\left\|\dot{\mathcal{P}}_{n}\right\|=\frac{1}{n} \rightarrow 0$ and $S\left(g ; \dot{\mathcal{P}}_{n}\right)=0$ for all $n \in \mathbb{N}$.
12. Consider the Dirichlet function, introduced in Example 5.1.6(g), defined by $f(x):=$ 1 for $x \in[0,1]$ rational and $f(x):=0$ for $x \in[0,1]$ irrational. Use the preceding exercise to show that f is not Riemann integrable on $[0,1]$.

Solution. Let $\left(\dot{\mathcal{P}}_{n}\right),\left(\dot{\mathcal{Q}}_{n}\right)$ be two sequences of tagged partitions of $[a, b]$ defined by

$$
\dot{\mathcal{P}}_{n}=\left\{\left(\left[\frac{i-1}{n}, \frac{i}{n}\right], \frac{i-1}{n}\right)\right\}_{i=1}^{n}, \quad \dot{\mathcal{Q}}_{n}=\left\{\left(\left[\frac{i-1}{n}, \frac{i}{n}\right], \frac{i-1}{n}+\frac{1}{\sqrt{2} n}\right)\right\}_{i=1}^{n} .
$$

Then $\left\|\dot{\mathcal{P}}_{n}\right\|=\left\|\dot{\mathcal{Q}}_{n}\right\|=\frac{1}{n} \rightarrow 0$. However, $S\left(f ; \dot{\mathcal{P}}_{n}\right)=1$ while $S\left(f ; \dot{\mathcal{Q}}_{n}\right)=0$ for all $n \in \mathbb{N}$. Since $\lim _{n} S\left(f ; \dot{\mathcal{P}}_{n}\right) \neq \lim _{n} S\left(f ; \dot{\mathcal{Q}}_{n}\right), f$ is not Riemann integrable on $[0,1]$ by Exercise 7.1.11.
15. If $f \in \mathcal{R}[a, b]$ and $c \in \mathbb{R}$, we define g on $[a+c, b+c]$ by $g(y):=f(y-c)$. Prove that $g \in \mathcal{R}[a+c, b+c]$ and that $\int_{a+c}^{b+c} g=\int_{a}^{b} f$. The function g is called the c-translate of f.

Solution. First we observe that if $\dot{\mathcal{P}}:=\left\{\left(\left[x_{i-1}, x_{i}\right], t_{i}\right)\right\}_{i=1}^{n}$ is a tagged partition of $[a+c, b+c]$, then $\dot{\mathcal{P}}_{c}:=\left\{\left(\left[x_{i-1}-c, x_{i}-c\right], t_{i}-c\right)\right\}_{i=1}^{n}$ is a tagged partition of $[a, b]$ and $\left\|\dot{\mathcal{P}}_{c}\right\|=\|\dot{\mathcal{P}}\|$.
Let $\varepsilon>0$. Since $f \in \mathcal{R}[a, b]$, there exists $\delta>0$ such that if $\dot{\mathcal{Q}}$ is any tagged partition of $[a, b]$ with $\|\dot{\mathcal{Q}}\|<\delta$, then

$$
\left|S(f ; \dot{\mathcal{Q}})-\int_{a}^{b} f\right|<\varepsilon
$$

Now, if $\dot{\mathcal{P}}:=\left\{\left(\left[x_{i-1}, x_{i}\right], t_{i}\right)\right\}_{i=1}^{n}$ is a tagged partition of $[a+c, b+c]$ with $\|\dot{\mathcal{P}}\|<\delta$, then

$$
S(g ; \dot{\mathcal{P}})=\sum_{i=1}^{n} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} f\left(t_{i}-c\right)\left(\left(x_{i}-c\right)-\left(x_{i-1}-c\right)\right)=S\left(f, \dot{\mathcal{P}}_{c}\right)
$$

Since $\dot{\mathcal{P}}_{c}$ is a tagged partition of $[a, b]$ with $\left\|\dot{\mathcal{P}}_{c}\right\|=\|\dot{\mathcal{P}}\|<\delta$, we have

$$
\left|S(g ; \dot{\mathcal{P}})-\int_{a}^{b} f\right|=\left|S\left(f ; \dot{\mathcal{P}}_{c}\right)-\int_{a}^{b} f\right|<\varepsilon
$$

Therefore, $g \in \mathcal{R}[a+c, b+c]$ and $\int_{a+c}^{b+c} g=\int_{a}^{b} f$.

