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Section 6.4

4. Show that if x > 0, then 1 + 1
2
x− 1

8
x2 ≤

√
1 + x ≤ 1 + 1

2
x.

Solution. Let f(x) =
√

1 + x. Then, for any x > −1,

f ′(x) =
1

2
√

1 + x
, f ′′(x) = − 1

4(1 + x)3/2
, f ′′′(x) =

3

8(1 + x)5/2
.

Fix x > 0. By Taylor’s Theorem, there exists c1 ∈ (0, x) such that

f(x) = f(0) + f ′(0)(x− 0) +
f ′′(c1)

2!
(x− 0)2

= 1 +
1

2
x− 1

8(1 + c1)3/2
x2.

Since − 1
8(1+c1)3/2

x2 < 0, we have
√

1 + x ≤ 1 + 1
2
x.

Similarly, there exists c2 ∈ (0, x) such that

f(x) = f(0) + f ′(0)(x− 0) +
f ′′(0)

2!
(x− 0)2 +

f ′′′(c2)

3!
(x− 0)3

= 1 +
1

2
x− 1

8
x2 +

1

16(1 + c2)5/2
x3.

Since 1
16(1+c2)5/2

x3 > 0, we have 1 + 1
2
x− 1

8
x2 ≤

√
1 + x.

9. If g(x) := sinx, show that the remainder term in Taylor’s Theorem converges to
zero as n→∞ for each fixed x0 and x.

Solution. For fixed x0 and x, the n-th remainder term in Taylor’s Theorem is

Rn(x) =
g(n+1)(cn)

(n+ 1)!
(x− x0)n+1 for some cn between x0 and x.

Since g(n+1)(x) = ± sinx or ± cosx, we have |g(n+1)(cn)| ≤ 1 and hence

|Rn(x)| ≤ |x− x0|
n+1

(n+ 1)!
=: an.

Since lim
n→∞

an+1

an
= lim

n→∞
|x−x0|
n+1

= 0 < 1, the ratio test yields lim
n→∞

an = 0.

Therefore, lim
n→∞

Rn(x) = 0 by the squeeze theorem.
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10. Let h(x) := e−1/x
2

for x 6= 0 and h(0) := 0. Show that h(n)(0) = 0 for all n ∈ N.
Conclude that the remainder term in Taylor’s Theorem for x0 = 0 does not converge
to zero as n→∞ for x 6= 0.

Solution. First, we show that lim
x→0

h(x)/xk = 0 for any k ∈ N. By successive

application of L’Hospital’s Rule,

lim
y→+∞

yk

ey
= lim

y→+∞

kyk−1

ey
= · · · = lim

y→+∞

k!

ey
= 0 for any k ∈ N.

Let y = 1/x2. Then y → +∞ as x→ 0. Hence, for any k ∈ N,

lim
x→0

h(x)

xk
= lim

x→0

(1/x2)k

e1/x2 · xk = 0.

Next, we calculate h(n)(x) for x 6= 0. Clearly h(x) = e−1/x
2

is infinitely differentiable
for x 6= 0. By applying Leibniz’s rule to h′(x) = 2

x3 e
−1/x2

= 2
x3h(x), we have

h(n+1)(x) =
n∑

k=0

(
n

k

)(
2

x3

)(n−k)

h(k)(x) =
n∑

k=0

(
n

k

)
(−1)n−k

(n− k + 2)!

xn−k+3
h(k)(x) (∗)

for any x 6= 0 and integer n ≥ 0.

Now, we prove by induction on n that

(i) lim
x→0

h(n)(x)

xm
for any m ∈ N;

(ii) h(n)(0) = 0.

The case n = 0 is obviously true. Suppose (i) and (ii) are true for n. Then (∗) gives

lim
x→0

h(n+1)(x)

xm
=

n∑
k=0

(
n

k

)
(−1)n−k(n− k + 2)!

(
lim
x→0

h(k)(x)

xn−k+3+m

)
= 0.

Moreover,

h(n+1)(0) = lim
x→0

h(n)(x)− h(n)(0)

x− 0
= lim

x→0

h(n)(x)

x
= 0.

This completes the induction.

Finally, the remainder term in Taylor’s Theorem is given by

Rn(x) = h(x)−
n∑

k=0

h(k)(0)

k!
xk = h(x),

and so lim
x→0

Rn+1(x) = h(x) 6= 0 for x 6= 0.

11. If x ∈ [0, 1] and n ∈ N, show that∣∣∣∣ln(1 + x)−
(
x− x2

2
+
x3

3
− · · ·+ (−1)n−1

xn

n

)∣∣∣∣ < xn+1

n+ 1
.

Use this to approximate ln 1.5 with an error less than 0.01. Less than 0.001.
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Solution. Let f(x) = ln(1 + x). Then f is infinitely differentiable on (−1,∞) and

f (n)(x) =
(−1)n−1(n− 1)!

(1 + x)n
for x > −1, n ∈ N.

Fix x ∈ (0, 1] and n ∈ N. By Taylor’s Theorem, f(x) = Pn(x) +Rn(x), where

Pn(x) =
n∑

k=0

f (k)(0)

k!
(x− 0)k = x− x2

2
+
x3

3
− · · ·+ (−1)n−1

xn

n
,

and for some cn ∈ (0, x),

Rn(x) =
f (n+1)(cn)

(n+ 1)!
xn+1 =

1

n+ 1
· (−1)n

(1 + cn)n+1
xn+1.

The inequality follows since |Rn(x)| < xn+1

n+ 1
.

(Remark: The inequality is not true when x = 0.)

Put x = 0.5, we have

| ln 1.5− Pn(0.5)| < (0.5)n+1

n+ 1
.

When n = 4, (0.5)n+1

n+1
= 0.0625 < 0.01. So, with an error less than 0.01,

ln 1.5 ≈ P4(0.5) ≈ 0.4010416667.

When n = 7, (0.5)n+1

n+1
≈ 0.0004882 < 0.001. So, with an error less than 0.001,

ln 1.5 ≈ P7(0.5) ≈ 0.4058035714.

15. Let f be continuous on [a, b] and assume the second derivative f ′′ exists on (a, b).
Suppose that the graph of f and the line segment joining the points (a, f(a)) and
(b, f(b)) intersect at a point (x0, f(x0) where a < x0 < b. Show that there exists a
point c ∈ (a, b) such that f ′′(c) = 0.

Solution. By applying the Mean Value Theorem to f on the interval [a, x0], we
have

f(x0)− f(a)

x0 − a
= f ′(c1) for some c1 ∈ (a, x0).

By applying the Mean Value Theorem to f on the interval [x0, b], we have

f(b)− f(x0)

b− x0
= f ′(c2) for some c2 ∈ (x0, b).

Since (a, f(a)), (x0, f(x0)), (b, f(b)) lie on the same straight line, we have

f(x0)− f(a)

x0 − a
=
f(b)− f(x0)

b− x0
.
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Note that f ′ is continuous and differentiable on [c1, c2]. Another application of the
Mean Value Theorem implies that

f ′′(c) =
f ′(c2)− f ′(c1)

c2 − c1
= 0 for some c ∈ (c1, c2).

22. The equation lnx = x − 2 has two solutions. Approximate them using Newton’s
Method. What happens if x1 := 1

2
is the initial point?

Solution. Let f(x) = lnx− x+ 2. It is clearly twice differentiable on (0,∞) with
f ′(x) = 1

x
− 1 and f ′′(x) = − 1

x2 .

First, we will apply Newton’s Method (and its proof) to the intervals

I1 := [0.14, 0.16] ⊆ I ′1 := [0.1, 0.2].

Note that f(0.14) ≈ −0.1061 < 0 and f(0.16) ≈ 0.0074 > 0. The Intermediate
Value Theorem implies that there is r1 ∈ I1 such that f(r1) = 0. Moreover,

m1 := min
x∈I′1
|f ′(x)| = 1

0.2
− 1 = 4, M1 := max

x∈I′1
|f ′′(x)| = 1

0.12
= 100

Then K1 := M1/2m1 = 25/2 satisfies 1/K1 = 0.08 > length(I1) = 0.02. Take
δ1 = 0.02 ∈ (0, 1/K1). So the interval I∗1 := (r1 − δ1, r1 + δ1) satisfies I1 ⊆ I∗1 ⊆ I ′1.
Hence, by Newton’s Method and its proof, for any x1 ∈ I∗1 , the sequence (xn) defined
by

xn+1 := xn −
f(xn)

f ′(xn)
for all n ∈ N,

belongs to I∗1 and (xn) converges to r1. Since I1 ⊆ I∗1 , we can pick any x1 ∈ I1 as
the initial point. For example,

x1 = 0.14, x2 ≈ 0.1573, x3 ≈ 0.1586, x3 ≈ 0.1586, · · ·

Next, we will apply Newton’s Method (and its proof) to the intervals

I2 := [3, 4] ⊆ I ′2 := [2, 5].

Note that f(3) ≈ 0.0986 > 0 and f(4) ≈ −0.6137 < 0. The Intermediate Value
Theorem implies that there is r2 ∈ I2 such that f(r2) = 0. Moreover,

m2 := min
x∈I′2
|f ′(x)| = 1− 1

5
= 0.8 M2 := max

x∈I′2
|f ′′(x)| = 1

22
= 0.25.

Then K2 := M2/2m2 = 5/32 satisfies 1/K2 = 32/5 > length(I2) = 1. Take δ2 = 1 ∈
(0, 1/K2). So the interval I∗2 := (r2 − δ2, r2 + δ2) satisfies I2 ⊆ I∗2 ⊆ I ′2. Hence, by
Newton’s Method and its proof, for any x1 ∈ I∗2 , the sequence (xn) defined by

xn+1 := xn −
f(xn)

f ′(xn)
for all n ∈ N,
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belongs to I∗2 and (xn) converges to r2. Since I2 ⊆ I∗2 , we can pick any x1 ∈ I2 as
the initial point. For example,

x1 = 3, x2 ≈ 3.1479, x3 ≈ 3.1462, x3 ≈ 3.1462, · · ·

If x1 = 1
2

is the initial point, then x2 = ln 2− 1 < 0. The Newton’s Method cannot
proceed because f(x2) is not defined.


