THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH2060 Mathematical Analysis II (Spring 2023)
 Suggested Solution of Homework 3

Section 6.4

4. Show that if $x>0$, then $1+\frac{1}{2} x-\frac{1}{8} x^{2} \leq \sqrt{1+x} \leq 1+\frac{1}{2} x$.

Solution. Let $f(x)=\sqrt{1+x}$. Then, for any $x>-1$,

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{1+x}}, \quad f^{\prime \prime}(x)=-\frac{1}{4(1+x)^{3 / 2}}, \quad f^{\prime \prime \prime}(x)=\frac{3}{8(1+x)^{5 / 2}} .
$$

Fix $x>0$. By Taylor's Theorem, there exists $c_{1} \in(0, x)$ such that

$$
\begin{aligned}
f(x) & =f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}\left(c_{1}\right)}{2!}(x-0)^{2} \\
& =1+\frac{1}{2} x-\frac{1}{8\left(1+c_{1}\right)^{3 / 2}} x^{2} .
\end{aligned}
$$

Since $-\frac{1}{8\left(1+c_{1}\right)^{3 / 2}} x^{2}<0$, we have $\sqrt{1+x} \leq 1+\frac{1}{2} x$.
Similarly, there exists $c_{2} \in(0, x)$ such that

$$
\begin{aligned}
f(x) & =f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}(0)}{2!}(x-0)^{2}+\frac{f^{\prime \prime \prime}\left(c_{2}\right)}{3!}(x-0)^{3} \\
& =1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16\left(1+c_{2}\right)^{5 / 2}} x^{3} .
\end{aligned}
$$

Since $\frac{1}{16\left(1+c_{2}\right)^{5 / 2}} x^{3}>0$, we have $1+\frac{1}{2} x-\frac{1}{8} x^{2} \leq \sqrt{1+x}$.
9. If $g(x):=\sin x$, show that the remainder term in Taylor's Theorem converges to zero as $n \rightarrow \infty$ for each fixed x_{0} and x.

Solution. For fixed x_{0} and x, the n-th remainder term in Taylor's Theorem is

$$
R_{n}(x)=\frac{g^{(n+1)}\left(c_{n}\right)}{(n+1)!}\left(x-x_{0}\right)^{n+1} \quad \text { for some } c_{n} \text { between } x_{0} \text { and } x .
$$

Since $g^{(n+1)}(x)= \pm \sin x$ or $\pm \cos x$, we have $\left|g^{(n+1)}\left(c_{n}\right)\right| \leq 1$ and hence

$$
\left|R_{n}(x)\right| \leq \frac{\left|x-x_{0}\right|^{n+1}}{(n+1)!}=: a_{n}
$$

Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\left|x-x_{0}\right|}{n+1}=0<1$, the ratio test yields $\lim _{n \rightarrow \infty} a_{n}=0$.
Therefore, $\lim _{n \rightarrow \infty} R_{n}(x)=0$ by the squeeze theorem.
10. Let $h(x):=e^{-1 / x^{2}}$ for $x \neq 0$ and $h(0):=0$. Show that $h^{(n)}(0)=0$ for all $n \in \mathbb{N}$. Conclude that the remainder term in Taylor's Theorem for $x_{0}=0$ does not converge to zero as $n \rightarrow \infty$ for $x \neq 0$.

Solution. First, we show that $\lim _{x \rightarrow 0} h(x) / x^{k}=0$ for any $k \in \mathbb{N}$. By successive application of L'Hospital's Rule,

$$
\lim _{y \rightarrow+\infty} \frac{y^{k}}{e^{y}}=\lim _{y \rightarrow+\infty} \frac{k y^{k-1}}{e^{y}}=\cdots=\lim _{y \rightarrow+\infty} \frac{k!}{e^{y}}=0 \quad \text { for any } k \in \mathbb{N} .
$$

Let $y=1 / x^{2}$. Then $y \rightarrow+\infty$ as $x \rightarrow 0$. Hence, for any $k \in \mathbb{N}$,

$$
\lim _{x \rightarrow 0} \frac{h(x)}{x^{k}}=\lim _{x \rightarrow 0} \frac{\left(1 / x^{2}\right)^{k}}{e^{1 / x^{2}}} \cdot x^{k}=0
$$

Next, we calculate $h^{(n)}(x)$ for $x \neq 0$. Clearly $h(x)=e^{-1 / x^{2}}$ is infinitely differentiable for $x \neq 0$. By applying Leibniz's rule to $h^{\prime}(x)=\frac{2}{x^{3}} e^{-1 / x^{2}}=\frac{2}{x^{3}} h(x)$, we have

$$
\begin{equation*}
h^{(n+1)}(x)=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{2}{x^{3}}\right)^{(n-k)} h^{(k)}(x)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \frac{(n-k+2)!}{x^{n-k+3}} h^{(k)}(x) \tag{*}
\end{equation*}
$$

for any $x \neq 0$ and integer $n \geq 0$.
Now, we prove by induction on n that
(i) $\lim _{x \rightarrow 0} \frac{h^{(n)}(x)}{x^{m}}$ for any $m \in \mathbb{N}$;
(ii) $h^{(n)}(0)=0$.

The case $n=0$ is obviously true. Suppose (i) and (ii) are true for n. Then (*) gives

$$
\lim _{x \rightarrow 0} \frac{h^{(n+1)}(x)}{x^{m}}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(n-k+2)!\left(\lim _{x \rightarrow 0} \frac{h^{(k)}(x)}{x^{n-k+3+m}}\right)=0
$$

Moreover,

$$
h^{(n+1)}(0)=\lim _{x \rightarrow 0} \frac{h^{(n)}(x)-h^{(n)}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{h^{(n)}(x)}{x}=0 .
$$

This completes the induction.
Finally, the remainder term in Taylor's Theorem is given by

$$
R_{n}(x)=h(x)-\sum_{k=0}^{n} \frac{h^{(k)}(0)}{k!} x^{k}=h(x),
$$

and so $\lim _{x \rightarrow 0} R_{n+1}(x)=h(x) \neq 0$ for $x \neq 0$.
11. If $x \in[0,1]$ and $n \in \mathbb{N}$, show that

$$
\left|\ln (1+x)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}\right)\right|<\frac{x^{n+1}}{n+1} .
$$

Use this to approximate $\ln 1.5$ with an error less than 0.01 . Less than 0.001 .

Solution. Let $f(x)=\ln (1+x)$. Then f is infinitely differentiable on $(-1, \infty)$ and

$$
f^{(n)}(x)=\frac{(-1)^{n-1}(n-1)!}{(1+x)^{n}} \quad \text { for } x>-1, n \in \mathbb{N}
$$

Fix $x \in(0,1]$ and $n \in \mathbb{N}$. By Taylor's Theorem, $f(x)=P_{n}(x)+R_{n}(x)$, where

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!}(x-0)^{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}
$$

and for some $c_{n} \in(0, x)$,

$$
R_{n}(x)=\frac{f^{(n+1)}\left(c_{n}\right)}{(n+1)!} x^{n+1}=\frac{1}{n+1} \cdot \frac{(-1)^{n}}{\left(1+c_{n}\right)^{n+1}} x^{n+1}
$$

The inequality follows since $\left|R_{n}(x)\right|<\frac{x^{n+1}}{n+1}$.
(Remark: The inequality is not true when $x=0$.)
Put $x=0.5$, we have

$$
\left|\ln 1.5-P_{n}(0.5)\right|<\frac{(0.5)^{n+1}}{n+1}
$$

When $n=4, \frac{(0.5)^{n+1}}{n+1}=0.0625<0.01$. So, with an error less than 0.01 ,

$$
\ln 1.5 \approx P_{4}(0.5) \approx 0.4010416667
$$

When $n=7, \frac{(0.5)^{n+1}}{n+1} \approx 0.0004882<0.001$. So, with an error less than 0.001 ,

$$
\ln 1.5 \approx P_{7}(0.5) \approx 0.4058035714
$$

15. Let f be continuous on $[a, b]$ and assume the second derivative $f^{\prime \prime}$ exists on (a, b). Suppose that the graph of f and the line segment joining the points $(a, f(a))$ and $(b, f(b))$ intersect at a point $\left(x_{0}, f\left(x_{0}\right)\right.$ where $a<x_{0}<b$. Show that there exists a point $c \in(a, b)$ such that $f^{\prime \prime}(c)=0$.

Solution. By applying the Mean Value Theorem to f on the interval $\left[a, x_{0}\right.$], we have

$$
\frac{f\left(x_{0}\right)-f(a)}{x_{0}-a}=f^{\prime}\left(c_{1}\right) \quad \text { for some } c_{1} \in\left(a, x_{0}\right)
$$

By applying the Mean Value Theorem to f on the interval $\left[x_{0}, b\right]$, we have

$$
\frac{f(b)-f\left(x_{0}\right)}{b-x_{0}}=f^{\prime}\left(c_{2}\right) \quad \text { for some } c_{2} \in\left(x_{0}, b\right)
$$

Since $(a, f(a)),\left(x_{0}, f\left(x_{0}\right)\right),(b, f(b))$ lie on the same straight line, we have

$$
\frac{f\left(x_{0}\right)-f(a)}{x_{0}-a}=\frac{f(b)-f\left(x_{0}\right)}{b-x_{0}} .
$$

Note that f^{\prime} is continuous and differentiable on $\left[c_{1}, c_{2}\right]$. Another application of the Mean Value Theorem implies that

$$
f^{\prime \prime}(c)=\frac{f^{\prime}\left(c_{2}\right)-f^{\prime}\left(c_{1}\right)}{c_{2}-c_{1}}=0 \quad \text { for some } c \in\left(c_{1}, c_{2}\right)
$$

22. The equation $\ln x=x-2$ has two solutions. Approximate them using Newton's Method. What happens if $x_{1}:=\frac{1}{2}$ is the initial point?

Solution. Let $f(x)=\ln x-x+2$. It is clearly twice differentiable on $(0, \infty)$ with $f^{\prime}(x)=\frac{1}{x}-1$ and $f^{\prime \prime}(x)=-\frac{1}{x^{2}}$.
First, we will apply Newton's Method (and its proof) to the intervals

$$
I_{1}:=[0.14,0.16] \quad \subseteq \quad I_{1}^{\prime}:=[0.1,0.2] .
$$

Note that $f(0.14) \approx-0.1061<0$ and $f(0.16) \approx 0.0074>0$. The Intermediate Value Theorem implies that there is $r_{1} \in I_{1}$ such that $f\left(r_{1}\right)=0$. Moreover,

$$
m_{1}:=\min _{x \in I_{1}^{\prime}}\left|f^{\prime}(x)\right|=\frac{1}{0.2}-1=4, \quad M_{1}:=\max _{x \in I_{1}^{\prime}}\left|f^{\prime \prime}(x)\right|=\frac{1}{0.1^{2}}=100
$$

Then $K_{1}:=M_{1} / 2 m_{1}=25 / 2$ satisfies $1 / K_{1}=0.08>\operatorname{length}\left(I_{1}\right)=0.02$. Take $\delta_{1}=0.02 \in\left(0,1 / K_{1}\right)$. So the interval $I_{1}^{*}:=\left(r_{1}-\delta_{1}, r_{1}+\delta_{1}\right)$ satisfies $I_{1} \subseteq I_{1}^{*} \subseteq I_{1}^{\prime}$. Hence, by Newton's Method and its proof, for any $x_{1} \in I_{1}^{*}$, the sequence (x_{n}) defined by

$$
x_{n+1}:=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad \text { for all } n \in \mathbb{N},
$$

belongs to I_{1}^{*} and $\left(x_{n}\right)$ converges to r_{1}. Since $I_{1} \subseteq I_{1}^{*}$, we can pick any $x_{1} \in I_{1}$ as the initial point. For example,

$$
x_{1}=0.14, \quad x_{2} \approx 0.1573, \quad x_{3} \approx 0.1586, \quad x_{3} \approx 0.1586, \quad \cdots
$$

Next, we will apply Newton's Method (and its proof) to the intervals

$$
I_{2}:=[3,4] \subseteq I_{2}^{\prime}:=[2,5] .
$$

Note that $f(3) \approx 0.0986>0$ and $f(4) \approx-0.6137<0$. The Intermediate Value Theorem implies that there is $r_{2} \in I_{2}$ such that $f\left(r_{2}\right)=0$. Moreover,

$$
m_{2}:=\min _{x \in I_{2}^{\prime}}\left|f^{\prime}(x)\right|=1-\frac{1}{5}=0.8 \quad M_{2}:=\max _{x \in I_{2}^{\prime}}\left|f^{\prime \prime}(x)\right|=\frac{1}{2^{2}}=0.25
$$

Then $K_{2}:=M_{2} / 2 m_{2}=5 / 32$ satisfies $1 / K_{2}=32 / 5>$ length $\left(I_{2}\right)=1$. Take $\delta_{2}=1 \in$ $\left(0,1 / K_{2}\right)$. So the interval $I_{2}^{*}:=\left(r_{2}-\delta_{2}, r_{2}+\delta_{2}\right)$ satisfies $I_{2} \subseteq I_{2}^{*} \subseteq I_{2}^{\prime}$. Hence, by Newton's Method and its proof, for any $x_{1} \in I_{2}^{*}$, the sequence (x_{n}) defined by

$$
x_{n+1}:=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad \text { for all } n \in \mathbb{N} \text {, }
$$

belongs to I_{2}^{*} and $\left(x_{n}\right)$ converges to r_{2}. Since $I_{2} \subseteq I_{2}^{*}$, we can pick any $x_{1} \in I_{2}$ as the initial point. For example,

$$
x_{1}=3, \quad x_{2} \approx 3.1479, \quad x_{3} \approx 3.1462, \quad x_{3} \approx 3.1462, \quad \cdots
$$

If $x_{1}=\frac{1}{2}$ is the initial point, then $x_{2}=\ln 2-1<0$. The Newton's Method cannot proceed because $f\left(x_{2}\right)$ is not defined.

