$$\frac{\operatorname{Thm} 94.13}{\operatorname{If} \Sigma a_{n}x^{h} \times \Sigma b_{n}x^{n}} \quad (awerge \text{ to the } \underline{Same function f}$$
on our interval $(-r, r)$, $r>0$, then
$$a_{n} = b_{n}, \quad \forall n \in \mathbb{N}$$
 $(\operatorname{In} \operatorname{fact} a_{n} = b_{n} = \frac{1}{n!} f^{(n)}(0))$

$$\underline{Pf}: \quad \operatorname{By} \quad \operatorname{remark} (i(1) \text{ of } \operatorname{Thm} 9.4, 12, \quad \forall k \in \mathbb{N}, \\ \int_{n=k}^{(k)} (x_{n}) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_{n}x^{n-k} \quad \forall x \in (-r, r).$$

$$\Rightarrow \quad f^{(k)}(0) = \frac{k!}{(k-k)!} a_{k} \quad (D^{n-k} = 0 \text{ fa } n > k))$$

$$\Rightarrow \quad a_{k} = \frac{1}{k!} f^{(k)}(0)$$
Same for b_{k} .

Taylor Series
Let
$$f$$
 thas derivatives of all orders at a point $c\in \mathbb{R}$,
then one can firm a power series $\sum_{n=0}^{\infty} \frac{f^{(n)}c^{2}}{n!}(x-c)^{n}$.
Note that f to convergence yet (unless $x=c$)
• Even it converges, it may not equal $f(F_{x}.9.4.12)$

Def we say that
$$S(x) = \sum_{n=0}^{\infty} \frac{S^{(n)}(c)}{n!} (x-c)^n$$

is the Taylor expansion of f at c if $\exists R > 0$ such that
 $\sum_{n=0}^{\infty} \frac{S^{(n)}(c)}{n!} (x-c)^n$ converges to $f(x)$ on $(c-R, c+R)$,
and $\frac{S^{(n)}(c)}{n!}$ are called Taylor coefficients.

(i.e. The remaider Rn(x) in Taylor's Thms -> 0 on (c-R, c+R)) Remark: By Uniqueness Thm 9.4.13, if Taylor expansion exists, if is unique.

<u>Eg 9.4.14</u>

(a)
$$f(x) = A\overline{u}x$$
, $x \in \mathbb{R}$,
Then $f'(x) = \begin{cases} (-1)^k A\overline{u}x, & if n=2k \\ (-1)^k A\overline{u}x, & if n=2k+1 \end{cases}$.
At c=0, we have
 $f'(0) = \begin{cases} 0, & if n=2k \\ (-1)^k, & if n=2k+1 \end{cases}$

Furthermore, by Taylor's Thun 6.4.1, the remainder Rn(x) satisfies $|R_{n}(x)| = \frac{|f^{(n+1)}(c_{i})| |x|^{n+1}}{(n+1)!} \quad \text{for some } C_{i} \text{ between } x \neq 0$ $\leq \frac{|x|^{n+1}}{(n+1)!} \rightarrow 0$

$$\therefore \quad \text{sin} \chi = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} \chi^{2n+1} , \quad \forall x \in \mathbb{R}$$
is the Taylor expansion of sin χ at $x=0$.
Then application of Differentiation Them 9.4.12, we have
 $\cos \chi = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} \chi^{2n} , \quad \forall x \in \mathbb{R}$
is the Taylor expansion of $\cos \chi$ at $\chi = 0$.
Remarks: (i) In this example, we used "Remainder of Taylor's series"
to calculate the radius of convergence, not directly
from definition or using $\frac{1}{p} = \lim_{n \to 1} \frac{|a_n|}{|a_{n+1}|}$ (when himiteriate)
Note that the series only theme "even" terms on "odd" terms,
 $a_{2k+1} = 0$ on $a_{2k} = 0$. Hence $\frac{|a_{n+1}|}{|a_{n+1}|}$ as not well-
defined and hence $\lim_{n \to 1} \frac{|a_{n+1}|}{|a_{n+1}|}$ is not well-
to use definition $g = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$, we note for ag:
that for since series: $a_{1n} = \begin{cases} \frac{(-1)^k}{(2k+1)!} & \text{if } n=2k+1 \\ 0 & \text{if } n=2k \end{cases}$
 \therefore the seq. $|a_n|^{\frac{1}{n}} = \left(\frac{1}{(2k+1)!}\right)^{\frac{1}{n}} = 0$ \therefore $R = +\infty$.

(ii) But calculation of radius of convergence doesn't prove the Taylor's series converges to the "original function".

(b)
$$g(x) = e^{x}$$
, $x \in \mathbb{R}$
Then $g^{(n)}(x) = e^{x}$, $\forall x \in \mathbb{R} \implies \int_{1}^{n} (0) = 1$.
By Taylor's Thin 6.4.1, the remainder satisfies
 $|\mathbb{R}_{n}(x)| \le \frac{e^{c}}{(n+1)!} |x|^{n+1}$ for some c between $x \ge 0$.
 $\le \frac{e^{|x|} |x|^{n+1}}{(n+1)!} \longrightarrow 0$ as $n \ge \infty$.
 $\therefore e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$, $\forall x \in \mathbb{R}$
is the Taylor expansion of e^{x} at $x = 0$.
Furthermore, by $e^{x} = e^{c} e^{x-c} = e^{c} \sum_{n=0}^{\infty} \frac{1}{n!} (x-c)^{n}$,
we see that $e^{x} = \sum_{n=0}^{\infty} \frac{e^{c}}{n!} (x-c)^{n}$ is the
Taylor expansion of e^{x} at $x = c$.

<u>Remarks</u>: ii) This implies the radius of conveyence = +00 (says at c=0). Of course, one can derive it from calculating $\left(\frac{1}{n!}\right)^{\frac{1}{n}} \rightarrow 0$ as $n \rightarrow +\infty$.

Since
$$|a_n|^{\frac{1}{n}} = \left(\frac{1}{n!}\right)^{\frac{1}{n}}$$
 and limit exists,
 $\therefore p = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{1}{n!}\right)^{\frac{1}{n}} = 0 \implies R = +\infty$.
(ii) The radius of conveyence R can be calculated by

$$\frac{\operatorname{lin}}{n \ge \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{\operatorname{lin}}{n \ge \infty} \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}} = \operatorname{lin}_{n \ge \infty} (n+1) = \infty$$

.

Review

Differentiation Ch6 \$6.1 Derivative (Chain rule, Inverse function) \$6.2 Mean value Thin (Rolle's Thin, 1st derivative test for Extrema) 6.3 L'Hospital's Rules \$6.4 Taylor's Thm (derivative form of remainder, relative extrana, convex function, Newton's method) Ch7 Riemann Integral Riemann integral (partition, tagged partition, Riemann sum, \$F.1 Riemann integrable, boundedness than) Riemann integrable functions (Canday Criterion, 37.2 Squeeze Thm, classes of Riemann atymalble functions, additionly Than) (Midtem up to have) \$7.3 The Fundamental Thin (1st fam Jaf=F(6)-Fa z^{nd} fam $\frac{d}{dx} \int_{a}^{x} f = f(x)$; substitution Thue, Le besque's Integralility (ritarian (pf anited), Integration by Parts Taylor's Thur with notgenal fair remainder)

Root Test, Ratio Test, and their limit vorsion, Jurtugual Test, Raable's Test) §9.3 Tests fa Nonabsoluto Convegence (alternations series, Abel's Test, Dirichlet Test)

39.4 Series of Functions (pointuine & Uniform Univergences, Cauchy Criterian for Uniform convergence, M-Test, Power Series = radices of convergence, uniform our gence when restrict closed a fold substitutenal, containanty, differentiation a cirtigenoation term-by-term) (End)

(overs all material including those in lectures, tutorials, tranework, & taxtbook (including all exercises in Textbook no matter it's assigned in homework or not) with emphasis on those material offer the nighter (i.e. \$7.3 - \$9.4). But those material before nighter (i.e. \$6.1 - \$7.2) May aloo be tested directly / explicitly or indirectly / implicitly.