Cor $9.2 .9\left\{\begin{array}{l}\cdot X_{n} \neq 0, \forall n=1,2,3, \cdots \\ \cdot a=\lim _{n \rightarrow \infty} n\left(1-\left|\frac{x_{n+1}}{x_{n}}\right|\right) \text { exists }\end{array}\right.$
Then $\left\{\begin{array}{l}\cdot a>1 \Rightarrow \sum x_{u} \text { is absolutely convergent } \\ \cdot a<1 \Rightarrow \sum x_{u} \text { is not absolutely convergent }\end{array}\right.$
Pf: United
Egg 9.2.10
(a) Raabe's Test fa $\sum \frac{1}{n^{+}}$:

$$
\begin{aligned}
& \left.\qquad \begin{array}{rl}
a & =\lim _{n \rightarrow \infty} n\left(1-\left\lvert\, \frac{1}{\left(\frac{1}{(1)^{p}}\right.} \frac{\frac{1}{n^{p}}}{}\right.\right.
\end{array}\right)=\lim _{n \rightarrow \infty} n\left(1-\frac{n^{p}}{(n+1)^{p}}\right) \\
& \\
& =\lim _{n \rightarrow \infty} n\left(1-\frac{1}{\left(1+\frac{1}{n}\right)^{p}}\right)=\lim _{n \rightarrow \infty}\left[\frac{\left(1+\frac{1}{n}\right)^{p}-1}{\frac{1}{n}} \cdot \frac{1}{\left(1+\frac{1}{n}\right)^{p}}\right] \\
& \text { Clearly } \lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{p}-1}{\frac{1}{n}}=\left.\frac{d}{d x}\right|_{x=1} x^{p}=p \quad(\text { Thu 8.3,13) } \\
& \therefore \quad a=p \cdot 1=p .
\end{aligned}
$$

By Cor 9.2 .9 to Raabe's Test (a just call it Raabe's Test),
$p>1 \Rightarrow \sum \frac{1}{n^{p}}$ is (absolectaly) convergent
$p<1 \Rightarrow \sum \frac{1}{n^{p}}$ is not (absolutely) convergent (hence divergent (as $\left.\frac{1}{n^{p}}>0, \forall u\right)$)
However, result fa $P=1$ cannot be deduced from Raabe's Test.
(b) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$.

Easy to check:

$$
\left\{\begin{aligned}
\left|\frac{x_{n+1}}{x_{n}}\right|=\frac{\frac{n+1}{(n+1)^{2}+1}}{\frac{n}{n^{2}+1}} & =\frac{n+1}{n} \cdot \frac{n^{2}+1}{(n+1)^{2}+1} \rightarrow 1 \text {, and } \\
\cdot n\left(1-\left|\frac{x n+1}{x n}\right|\right) & =n \cdot\left(1-\frac{n+1}{n} \cdot \frac{n^{2}+1}{(n+1)^{2}+1}\right) \\
& =\frac{n^{2}+n-1}{(n+1)^{2}+1} \longrightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}\right.
$$

\therefore Both Cor 9.25 and Cor 9.2.2 cannot be applied.
But $\left|\frac{x_{n+1}}{x_{n}}\right|-1=\frac{n+1}{n} \frac{n^{2}+1}{(n+1)^{2}+1}-1=\frac{(n+1)\left(n^{2}+1\right)-n\left[(n+1)^{2}+1\right]}{n\left[(n+1)^{2}+1\right]}$

$$
\begin{aligned}
&=-\frac{n^{2}+n-1}{n\left[(n+1)^{2}+1\right]}=-\frac{1}{n} \cdot \frac{n^{2}+n-1}{n^{2}+2 n+2} \geqslant-\frac{1}{n} \\
& \therefore \quad\left|\frac{x_{n+1}}{x_{n}}\right| \geqslant 1-\frac{1}{n}, \forall n \geqslant 1 \quad\left(\begin{array}{l}
a=1 \leqslant 1 \\
\&
\end{array}\right. \\
&\therefore=1 \in \mathbb{N})
\end{aligned}
$$

Rake's Test (Thu 9,2,8) $\Rightarrow \sum x_{n}$ is not absolecticly convergent.

Remakes: (1) "Limiting form" of Raabe's Test (Cor 9.2.9) dresn't apply, but Raabe's Test (Thu 9.2.8) applies.
(ii) Integral Test a Limit Comparison Test walk fa this example.
§9.3 Tests for Nonabsolute Convergence
Def 9.3.1 - $x_{n} \neq 0, \forall n \in \mathbb{N}$
Then - the sequence $\left(x_{n}\right)$ is said to be alternating

$$
\text { if }(-1)^{n+1} x_{n}>0 \quad(a<0) \quad \forall n \in \mathbb{N}
$$

- in this care, the series $\sum x_{n}$ is called an alternating series.
e.. If $z_{n}>0$, then $x_{n}=(-1)^{n+1} z_{n}$ and $x_{n}=(-1)^{n} z_{n}$ are alternating
(explicit es: $z_{n}=\frac{1}{n}>0,\left(x_{n}\right)=\left((-1)^{n+1} z_{n}\right)=\left(1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \cdots\right)$ is alternation g)

Thm 9.3.2 Let, $\left\{\begin{array}{l}z_{n}>0 \text { and deceasing }\left(z_{n+1} \leqslant z_{n}\right) \forall n \in \mathbb{N} \\ \lim _{n \rightarrow \infty} z_{n}=0\end{array}\right.$
Then the alternation g series $\sum(-1)^{n+1} z_{n}$ is convergent
Pf: Consider poutial sum

$$
S_{2 n}=\sum_{k=1}^{2 n}(-1)^{k+1} z_{k}=z_{1}-z_{2}+z_{3}-z_{4}+\cdots+z_{2 n-1}-z_{2 n}
$$

Then $S_{2(n+1)}-S_{2 n}=Z_{2 n+1}-Z_{2 n+2} \geq 0$, since Z_{n} is deneasoing
$\therefore\left(S_{2 n}\right)$ is increasing $(i n n)$.
Also $z_{1}-S_{2 n}=(\underbrace{z_{2}-z_{3}}_{v_{0}^{\prime}}+\underbrace{z_{4}-z_{5}}_{v_{0}^{\prime}}+\cdots+\underbrace{z_{2 n-2}-z_{2 n-1}}_{v^{\prime \prime}}+z_{2 n} z_{0})>0$
$\therefore\left(S_{2 n}\right)$ is bounded above by z_{1}
By Monotone Convergence Thu (Th 3.3.2), $\exists s \in \mathbb{R}$ s.t.

$$
S_{2 n} \rightarrow S \text { as } n \rightarrow \infty \text {. }
$$

Together with $Z_{n} \rightarrow 0$ as $n \rightarrow \infty$, we have
$\forall \varepsilon>0, \exists K \in \mathbb{N}$ sit.
if $n \geqslant K$, then $\left\{\begin{array}{l}0\left|S_{2 n}-S\right|<\frac{\varepsilon}{2}, \text { and } \\ 0(0<) Z_{2 n+1}<\frac{\varepsilon}{2} .\end{array}\right.$
Then $\quad\left|S_{2 n+1}-s\right|=\left|z_{2 n+1}+S_{2 n}-s\right|$

$$
\leqslant\left|z_{2 n+1}\right|+\left|S_{2 n}-s\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

$\therefore \quad S_{2 n+1} \rightarrow S$ as $n \rightarrow \infty$.
Combining wist $S_{2 n} \rightarrow S$ as $n \rightarrow \infty$, we have

$$
\lim S_{n}=s
$$

$\therefore \quad \sum(-1)^{n+1} z_{n}$ is convergent.
egs: By Thm 9.3.1, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\cdots$
is convergent
(Note: $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\cdots$ is divergent by integral test)

$$
\lg 9.2 .7(d)
$$

The Dirichlet and Abel Tests

Thu 9.33 (Abel's Lemma)
Let - $\left(x_{n}\right),\left(y_{n}\right)$ be sequences in \mathbb{R}, and

$$
\cdot\left\{\begin{array}{l}
S_{0}=0, \& \\
S_{n}=\sum_{n=1}^{n} y_{k}, n=1,2,3, \ldots
\end{array}\right.
$$

Then for $m>n$,

$$
\sum_{k=n+1}^{m} x_{k} y_{k}=\left(x_{m} s_{m}-x_{n+1} s_{n}\right)+\sum_{k=n+1}^{m-1}\left(x_{k}-x_{k+1}\right) s_{k}
$$

Pf: $\sum_{k=n+1}^{m} x_{k} y_{k}=\sum_{k=n+1}^{m} x_{k}\left(S_{k}-S_{k-1}\right)$

$$
\begin{aligned}
= & x_{m}\left(S_{m}-S_{m-1}\right)+x_{m-1}\left(S_{m-1}-S_{m-2}\right)+\cdots+x_{n+1}\left(s_{n+1}-S_{n}\right) \\
= & x_{m} S_{m}-\left(x_{m}-x_{m-1}\right) S_{m-1}-\left(x_{m-1}-x_{m-2}\right) s_{m-2}-\cdots \\
& \quad-\left(x_{n+2}-x_{n+1}\right) s_{n+1}-x_{n+1} s_{n} \\
= & \left(x_{m} s_{m}-x_{n+1} s_{n}\right)+\sum_{k=n+1}^{m-1}\left(x_{k}-x_{k+1}\right) s_{k}
\end{aligned}
$$

Thm 9.3.4 (Dirichlet's Test)
If $\left\{\begin{array}{l}\cdot\left(x_{n}\right) \text { decreaking \& } \underline{\operatorname{lin} x_{n}=0} \\ \left(S_{n}=\sum_{k=1}^{n} y_{k}\right) \text { are bounded, }\end{array}\right.$
then $\sum x_{n} y_{n}$ is convergent.
Pf: $\left(s_{n}\right)$ bdd $\Rightarrow \exists B>0$ s.t. $\left|s_{n}\right| \leqslant B, \forall n \in \mathbb{N}$.
Then Abel's lemma (Thm9.3.3) $\Rightarrow f_{a} m>n$,

$$
\left.\begin{array}{l}
\left.\begin{array}{rl}
\left|\sum_{k=n+1}^{m} x_{k} y_{k}\right| & \leqslant\left|x_{m} s_{m}-x_{n+1} s_{n}\right|+\sum_{k=n+1}^{m-1}\left|x_{k}-x_{k+1}\right|\left|s_{k}\right| \\
& \leqslant\left(x_{m}+x_{n+1}\right) B+\sum_{k=n+1}^{m-1}\left(x_{k}-x_{k+1}\right) B \quad\left(\operatorname{sic} \quad x_{n}\right. \text { deneen-rg } \\
x_{k}-x_{n+1} \geq 0
\end{array}\right) \\
\quad=B\left[\left(x_{m}+x_{n+1}\right)+\left(x_{n+1}-x_{m}\right)\right] \\
\\
=2 x_{n+1} B \rightarrow 0 \text { as } n \rightarrow \infty \\
\left(\therefore \forall \varepsilon>0, \exists K \in \mathbb{N} \text { s.t. if } m>n \geqslant K,\left|\sum_{k=n+1}^{m} x_{n} y_{n}\right|<\varepsilon\right.
\end{array}\right) \$
$$

By Cancly Criterion (Thm 3.7.4), $\sum x_{n} y_{n}$ is convergent

Thm 9.35 (Abel's Test)
If $\left\{\begin{array}{l}\text { - }\left(x_{n}\right) \text { convergent monotone sequence } \\ \sum y_{n} \text { convergent }\end{array}\right.$
Then $\sum x_{n} y_{n}$ is abo convergent
(Multiplying convegent monotone coefficierts to a convergent seices results in a convergent señes.)

Pf: Case 1: $\left(X_{n}\right)$ decreasing \& $\operatorname{tin} X_{n}=x$
Let $u_{n}=x_{n}-x, \forall n \in \mathbb{N}$.
Then $\left(u_{n}\right)$ decreasing \& $u_{n} \rightarrow 0$.
Now $\sum y_{n}$ converges \Rightarrow partial sum of $\sum y_{n}$ are bounded
\therefore Dirichlet's Test (Thu 9.3.4) $\Rightarrow \sum u_{n} y_{n}$ is cmerergent.
Hence $\sum x_{n} y_{n}=\sum\left(u_{n}+x\right) y_{n}=\sum u_{n} y_{n}+x \sum y_{n}$
is also convergent.
Case 2 (X_{n}) increasing, $x=\operatorname{lin} x_{n}$.
Similar argument as in case 1 by considering $\nu_{n}=x-x_{n}, \forall n \in \mathbb{N}$ instead of u_{n}.
*

Eg 9.3.6 (a) Recall $2 \sin \frac{1}{2} x(\cos x+\cdots+\cos n x)=\sin \left(n+\frac{1}{2}\right) x-\sin \frac{1}{2} x\left(E_{x}\right)$
If x is fixed and $x \neq 2 k \pi, \forall k=\cdots-2,-1,0,1,2, \cdots$
Then $|\cos x+\cdots+\cos n x|=\frac{\left|\sin \left(n+\frac{1}{2}\right) x-\sin \frac{1}{2} x\right|}{2\left|\sin \frac{1}{2} x\right|} \leqslant \frac{1}{\left|\sin \frac{1}{2} x\right|}, \quad \forall n \in \mathbb{N}$ partial sem of
$\sum \cos n x$

$$
\sum \cos n x
$$

bound indep. of n
\therefore Fa a fired $x \neq 2 k \pi$, Dirichlet's Test \Rightarrow $\sum_{n=1}^{\infty} a_{n} \cos n x$ converges, provided $\left\{\begin{array}{l}\left(a_{n}\right) \text { is decreasing \& } \\ \text { ie } a_{n}=0 .\end{array}\right.$
(b) Similarly, from

$$
2\left(\sin \frac{1}{2} x\right)(\sin x+\cdots+\sin n x)=\cos \frac{1}{2} x-\cos \left(n+\frac{1}{2}\right) x, \quad \forall n \in \mathbb{N}
$$

we have, fa $x \neq 2 k \pi$,

$$
|\sin x+\cdots+\sin n x| \leqslant \frac{1}{\left|\sin \frac{1}{2} x\right|} \quad \forall n \in \mathbb{N}
$$

partial sum of $\sum \sin n x$
c bound indep, of n
$\Rightarrow \sum_{n=1}^{\infty} a_{n} \sin n x$ converges fa $x \neq 2 k \pi$ provided $\left\{\begin{array}{l}\left(a_{n}\right) \text { deceasing and } \\ \operatorname{lin} a_{n}=0 .\end{array}\right.$

