Cor8.4.2 If C, S are the functions in Thu 8.4.1, then
(iii) $\left\{\begin{array}{l}C^{\prime}(x)=-S(x), \\ S^{\prime}(x)=C(x)\end{array}\right.$
$\forall x \in \mathbb{R}$.

Makeover, $C_{\text {a }} S$ have derivatives of all orders
ff: Easy
Cor8.43 The function C \& S in Thm\&.4.I satisfy the Pythagorean Identify: $(C(x))^{2}+(S(x))^{2}=1, \quad \forall x \in \mathbb{R}$

Pf: Let $f(x)=(C(x))^{2}+(S(x))^{2}$.
By Thu 8.4.1, f is differentiable \&

$$
\begin{aligned}
f^{\prime}(x) & =2 C^{\prime}(x) C^{\prime}(x)+2 S(x) S^{\prime}(x) \\
& =-2 C^{\prime}(x) S(x)+2 S^{\prime}(x) C^{\prime}(x)=0, \quad \forall x \in \mathbb{R}
\end{aligned}
$$

$\Rightarrow f(x)$ is a constant function on \mathbb{R}.

$$
\Rightarrow f(x) \equiv f(0)=(d(0))^{2}+(S(0))^{2}=1, \quad \forall x \in \mathbb{R} .
$$

Thm8.4.4 The functions C and S satisfying

$$
(*)_{C}\left\{\begin{array}{l}
C^{\prime \prime}=-C \\
C^{\prime}(0)=1 \\
C^{\prime}(1)=0
\end{array} \quad \text { and } \quad(*)_{S},\left\{\begin{array}{l}
S^{\prime \prime}=-S \\
S(0)=0 \\
S^{\prime}(0)=1
\end{array}\right.\right.
$$

are míque.

Pf: Omitted (similar argument as in the proof for exponential function E by using Taylor's The, but reduce to "two" terms instead of "one" because the equations are $z^{\text {nd }}$ order.)

Def8.4.5 The unique functions $C \& S$ green in The 8.4.1 are called the cosine function and the sine function respectionty, and denoted by

$$
\cos x=C^{\prime}(x) \quad \& \quad \sin x=S(x)
$$

Thu 8.4.6: If $f: \mathbb{R} \rightarrow \mathbb{R}$ sateéfies $f^{\prime \prime}(x)=-f(x), \forall x \in \mathbb{R}$, then \exists real numbers α, β such that

$$
f(x)=\alpha d(x)+\beta S^{\prime}(x), \quad \forall x \in \mathbb{R} .
$$

Pf: Let $\alpha=f(0)$ \& $\beta=f^{\prime}(0)$.
And consider $\quad g(x)=\alpha C^{\prime}(x)+\beta S(x), \quad \forall x \in \mathbb{R}$.
Then $\cdot g(0)=\alpha C(0)+\beta S(0)=\alpha=f(0)$

- $g^{\prime}(x)=-\alpha S(x)+\beta C(x)$

$$
\begin{aligned}
& \Rightarrow g^{\prime}(0)=-\alpha S^{\prime}(0)+\beta c^{\prime}(0)=\beta=f^{\prime}(0) . \\
& g^{\prime \prime}(x)=\alpha C^{\prime \prime}(x)+\beta S^{\prime \prime}(x)=-g(x)
\end{aligned}
$$

Hence the function $h=f-g$ satisfies

$$
\left\{\begin{array}{l}
h^{\prime \prime}=f^{\prime \prime}-g^{\prime \prime}=-f-(-g)=-h \\
h^{\prime}(0)=f(0)-g(0)=0 \\
h^{\prime}(0)=f^{\prime}(0)-g^{\prime}(0)=0
\end{array}\right.
$$

Sinilarly argument as in the proof of Ttum 8.4.4, we have $h(x)=0, \forall x \in \mathbb{R}$.

$$
\therefore \quad f(x)=g(x)=\alpha C(X)+\beta S(x) \quad \forall x \in \mathbb{R} .
$$

Thm8.4.7 The casme $C(x)$ \& sume $S(x)$ satisfy
(V) $\quad C(-x)=C(x)$ \& $S(-x)=-S(x) \quad \forall x \in \mathbb{R}$
(vi) $\left\{\begin{array}{lc}C(x+y)=C(x) C(y)-S(x) S^{\prime}(y) \\ S(x+y)=S(x) C(y)+C(x) S(y)\end{array} \quad\right.$ (coupound augle $\begin{array}{c}\text { famulae } \\ \text { form }\end{array}$

Pf: Omitted (Easy by Thm $0.4 .4 \& 8.4 .6$)

Thm8.4.8 Fr $x \geqslant 0$,

$$
\text { (vii) }-x \leq S(x) \leqslant x ;
$$

(V, (ii) $1-\frac{1}{2} x^{2} \leqslant C^{\prime}(x) \leqslant 1$;
(ix) $x-\frac{1}{6} x^{3} \leqslant S(x) \leqslant x$;
(x) $1-\frac{1}{2} x^{2} \leqslant C(x) \leqslant 1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}$
$P f=$ Omitted

Lemma d.4.9 \exists a root γ of $C(x)$ in the viterval $[\sqrt{2}, \sqrt{3})$.

- Moreover, $C(x)>0 \quad \forall x \in[0, \gamma)$.
- The number 2γ is the smallest positive root of $S(x)$.

Pf: By in eq. (x) \bar{u} Thu 8.4.8

$$
1-\frac{1}{2} x^{2} \leqslant C(x) \leqslant 1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}
$$

we have $C(\sqrt{z}) \geqslant 0$ and

$$
\begin{aligned}
C(\sqrt{3}) & \leqslant 1-\frac{1}{2}(\sqrt{3})^{2}+\frac{1}{24}(\sqrt{3})^{4} \\
& =1-\frac{3}{2}+\frac{9}{24}=\frac{24-36+9}{24}=-\frac{1}{8}<0
\end{aligned}
$$

Intermediate value tum $\Rightarrow C(x)=0$ for same $x \in[\sqrt{2}, \sqrt{3}]$. let γ be the smallest such root of $C(x)$ is $[\sqrt{2}, \sqrt{3})$. Then $\forall x \in[0, \gamma)$,
if $x \in[\sqrt{2}, \gamma)$, then $C(x) \neq 0$ by the choice of γ.
If $x \in[0, \sqrt{2})$, then $C(x) \geq 1-\frac{1}{2} x^{2}>0$.
Therefae, continuity of $C(x) \Rightarrow C(x)>0, \forall x \in[0, \gamma)$
Finally by Thu 8.4.7 (with $x=y$), $S(2 x)=2 S(x) C(x)$
Therefore $S(2 \gamma)=2 . S(\gamma) C(\gamma)=0$
$\therefore 2 \gamma$ is a paitive root of $S(x)$.
Now let $2 \delta=$ smallest pritive root of $S(x)$.
Existence of δ follows from $S^{\prime}(0)=0$ \& $S^{\prime}(0)=1$
Suppose $\delta<\gamma$
Then $0=S(2 \delta)=2 S(\delta) C(\delta)_{p}$
Sure $C(x)>0, \forall x \in[0, \gamma)$, we have

$$
S\left(2 \cdot \frac{\delta}{2}\right)=S(\delta)=0
$$

which contradicts the defaiction (smallest) of δ.
Therefor $\delta=r$.

Note: Of course, we can prove that $\gamma>\sqrt{2}$ as stated in the Textbook. But we need Ex 8.4.4 (not just Then 8.4.8).

Def 8.4.10 $\pi \stackrel{\text { def }}{=} 2 \gamma=$ smallest passive root of S
Note $=$ Thu $8.4 .8(x) \Rightarrow 2.828 \leqslant \pi \leqslant 2 \sqrt[x]{\sqrt{6-2 \sqrt{3}}}<3.185$ (Ex!) smallest positive root of $1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}$.

Tm 8.4.11

- $C \& S$ are 2π-periodic (have period 2π)

$$
(x i) \quad C(x+2 \pi)=C(x) \text { \& } S(x+2 \pi)=S(x), \forall x \in \mathbb{R}
$$

e, $\left\{\begin{array}{l}S(x)=C\left(\frac{\pi}{2}-x\right)=-C\left(x+\frac{\pi}{2}\right) \quad \forall x \in \mathbb{R} \\ C(x)=S\left(\frac{\pi}{2}-x\right)=S\left(x+\frac{\pi}{2}\right)\end{array} \quad\right.$
If Omitted.

Ch 9 Infinite Series
\$9.1 Absolute Convergence
Recall Eg 3.7.6(b) Harmonic series
$\sum_{i=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots$ io divergent
(since partial sum $S_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ is unbounded)
but Eg 3.7.6(f) Alternating harmonic series

$$
\sum_{i=1}^{n} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots \text { is convergent }
$$

\therefore A series $\sum x_{n}$ may be convergent, but the series $\sum\left|x_{n}\right|$ may be divergent

Def 9.1.1 - $\sum x_{n}$ is absolutely convergent if the series $\sum\left|x_{n}\right|$ is convergent

- $\sum x_{n}$ is conditionally convergent (or non-absolutely (convergent) if $\sum x_{n}$ is convergent but $\sum\left|x_{n}\right|$ is divergent.
(i se conditionally convergent wo ans convergent but not absolutely convergent)
Eg: Alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent.

Thm 9.1.2 "Absolutely convergent" \Rightarrow "convergent".
Pf: $\quad \sum\left|x_{n}\right|$ convergent
$\Rightarrow \forall \varepsilon>0, \exists M(\varepsilon) \in \mathbb{N}$ st.
(Cauchy (ritorion 3,7.4)

$$
\text { if } m>n \geqslant M(\varepsilon) \text {, then }\left|x_{n+1}\right|+\cdots+\left|x_{m}\right|<\varepsilon
$$

Let $S_{n}=x_{1}+\cdots+x_{n}$ be the $n^{\text {th }}$ partial sum of $\sum x_{n}$, then $\forall m>n \geqslant M(\varepsilon)$,

$$
\left|S_{m}-S_{n}\right|=\left|x_{n+1}+\cdots+x_{m}\right| \leqslant\left|x_{n+1}\right|+\cdots+\left|x_{m}\right|<\varepsilon .
$$

$\therefore \sum x_{n}$ is convergent.

Grouping of Series
Fr a series of $\sum x_{n}$, one can construct many other series $\sum y_{k}$ by "grouping the terms":
inserting ponentheses that group together finitely many terms, but beeping the order of the terms x_{n} fired.

That is

$$
\begin{gathered}
y_{1}=\sum_{j=1}^{n_{1}} x_{j}, y_{2}=\sum_{j=n_{1}+1}^{n_{2}} x_{j}, \cdots, y_{k}=\sum_{j=n_{k-1}+1}^{n_{k}} x_{j}, \cdots \\
\left(n_{k}\left\langle n_{k+1} \quad \forall k=1,2, \cdots \& n_{0}=0\right)\right.
\end{gathered}
$$

$$
\begin{aligned}
\therefore & x_{1}+x_{2}+\cdots+x_{n}+\cdots \\
& =\left(x_{1}+\cdots+x_{n_{1}}\right)+\left(x_{n_{1}+1}+\cdots+x_{n_{2}}\right)+\left(x_{n_{2}+1}+\cdots\right)+\cdots \\
& =y_{1}+y_{2}+y_{3}+\cdots
\end{aligned}
$$

Eg: $\quad 1-\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{7}\right)-\frac{1}{8}+\left(\frac{1}{9}-\cdots+\frac{1}{13}\right)-\cdots$
is a grouping the terms of the alternating harmonic series.
(i.e. $y_{1}=1, y_{2}=-\frac{1}{2}, y_{3}=\frac{1}{3}-\frac{1}{4}, y_{4}=\frac{1}{5}-\frac{1}{6}+\frac{1}{7}$

$$
\left.y_{5}=-\frac{1}{8}, \quad y_{6}=\frac{1}{9}-\cdots+\frac{1}{13}, \cdots\right)
$$

Thu 9.1.3 $\sum x_{n}$ convergent
\Rightarrow any series $\sum y_{k}$ obtained from it by grouping the terms is ado convergent, \& converges to the same value.

Pf: Let $S_{n}=n^{\text {th }}$ partial sum of $\sum x_{n}$

$$
t_{k}=k^{\text {th }} \text { partial sure of } \sum y_{k} \text {. }
$$

If $y_{k}=\sum_{j=n_{k-1}+1}^{n_{k}} x_{j}$,
then $t_{1}=y_{1}=x_{1}+\cdots+x_{n_{1}}=S_{n_{1}}$

$$
\begin{aligned}
t_{2} & =y_{1}+y_{2}=\sum_{j=1}^{n_{1}} x_{j}+\sum_{j=n_{1}+1}^{n_{2}} x_{j}=x_{1}+\cdots+x_{n_{2}}=S_{n_{2}} \\
& \vdots \\
t_{k} & =S_{n_{k}}
\end{aligned}
$$

$\therefore\left(t_{k}\right)$ is a subseq of $\left(S_{n}\right)$
Since $\sum x_{n}$ is convergent, $S_{n} \rightarrow S\left(=\sum_{n=1}^{\infty} x_{n}\right)$ as $n \rightarrow \infty$

$$
\therefore \quad t_{k} \rightarrow S \text { as } k \rightarrow \infty
$$

i.e. $\sum y_{k}$ is convergent and converges to the same value as $\sum x_{n}$

Remark: The converse of $T h m 9.1,3$ is not true.
Counterexample: Let $\sum x_{n}=1-1+1-1+1 \cdots$

$$
\& \quad \sum y_{k}=(1-1)+(1-1)+(1-1)+\cdots
$$

Then $y_{k}=0 \quad \forall k \Rightarrow \sum y_{k}$ is convergent.
But original series $\sum x_{n}=1-1+1-1+1 \cdots$ is divergent.

Rearrangement of series
(Not grouping any terms, but scrambling the order of the tams.)

Def 9.1.t $\sum y_{k}$ is a rearrangement of $\sum x_{n}$,
if \exists a bijection (ie. one-to-one) $f: \mathbb{N} \rightarrow \mathbb{N}$ s.t.

$$
y_{k}=x_{f(k)} \quad \forall k \in \mathbb{N}=\{1,2,3, \cdots\} .
$$

Remarks: (i) $\sum x_{n}$ is convergent $\Rightarrow \sum y_{k}$ rearrangement is convergent (E x9.1.3)
(ii) Riemann Thm: If $\sum x_{n}$ conditionally convergent, then $\forall C \in \mathbb{R}, \exists$ a rearrangement $\sum y_{k}$ of $\sum x_{n}$ such that

$$
\sum_{k=1}^{\infty} y_{k}=c \quad \text { (Pf omitted) }
$$

The 9.1.5 If $\sum x_{n}$ is absolutely convergent, then any rearrangement $\sum y_{k}$ of $\sum x_{n}$ converges to the same value.

Pf: $\sum x_{n}$ absolutely convergent $\Rightarrow \sum x_{n}$ convergent.
Let $x=\sum_{n=1}^{\infty} x_{n}$, and $S_{n}=\sum_{k=1}^{n} x_{k}$.
Then $S_{n} \rightarrow x$ as $n \rightarrow \infty$

$$
\therefore \forall \varepsilon>0, \exists N_{1} \in \mathbb{N} \text { sit. }
$$

$$
\text { if } n \geqslant N_{1}, \quad\left|S_{n}-x\right|<\varepsilon \text {. }
$$

On the other hand, $\sum\left|x_{n}\right|$ convergent

$$
\Rightarrow \forall \varepsilon>0, \exists N_{2} \in \mathbb{N} \text { sit. }
$$

if $q>l \geqslant N_{2}$, then $\left|x_{l+1}\right|+\left|x_{l+2}\right|+\cdots+\left|X_{q}\right|<\varepsilon$
Therefor, for $N=\max \left\{N_{1}, N_{2}\right\}$,
if $n, q>N$,

$$
\left\{\begin{array}{l}
\left|s_{n}-x\right|<\varepsilon \text { and } \\
\left|x_{N+1}\right|+\left|x_{N+2}\right|+\cdots+\left|x_{q}\right|<\varepsilon
\end{array}\right.
$$

Let $\sum y_{k}$ be a rearrangement of Σx_{n} given by the bijection $f: \mathbb{N} \rightarrow \mathbb{N}$, ie. $y_{k}=x_{f(k)}, \forall k \in \mathbb{N}$.
Let $M=\max \left\{f^{-1}(1), \cdots, f^{-1}(N)\right\}$,
then all the terms x_{1}, \cdots, x_{N} are contained in $\left\{y_{1}, \cdots, y_{M}\right\}$.
\therefore If $t_{m}=\sum_{k=1}^{m} y_{k}$, then $\forall m \geq M, \quad(\& n>N)$

$$
\begin{aligned}
t_{m}-s_{n} & =(\underbrace{\left(y_{1}+\cdots+y_{M}+\cdots+y_{m}\right)-\left(x_{1}+\cdots+x_{N}+\cdots+x_{n}\right)}_{\left(n_{0} x_{1}, \cdots x_{N} \text { remain }\right)} \\
& =(\underbrace{}_{(n 0} x_{1}+\cdots, x_{N} \text { in these tams })
\end{aligned}
$$

is a sum of finite number of terms x_{k} with $k>N$.
$\Rightarrow\left|t_{m}-S_{n}\right| \leqslant \sum_{k=N+1}^{q}\left|x_{k}\right| \quad$ far some q
$B y(*), \quad\left|t_{m}-S_{n}\right|<\varepsilon$.
Hence, $\forall \varepsilon>0, \exists M>0$ such that
if $m \geqslant M, \quad\left|t_{m}-x\right| \leqslant\left|t_{m}-S_{n}\right|+\left|S_{n}-x\right|<\varepsilon+\varepsilon=2 \varepsilon$.
Since $\varepsilon>0$ is cubitrary, $\lim _{m \rightarrow \infty} t_{m}=x$

$$
\therefore \quad \sum y_{k} \rightarrow x=\sum x_{n} .
$$

\$9.2 Tests fa Absolute Convergence
Thm9.2.1 (Linit Comparison Test II)
Suppse $\left\{\begin{array}{l}\text { • } x_{n}, y_{n} \neq 0, \forall n=1,2, \ldots \\ \text { • } \lim _{n \rightarrow \infty}\left|\frac{x_{n}}{y_{n}}\right|=r \text { exists }\end{array}\right.$
Then (a) If $r \neq 0$, then
$\sum x_{n}$ absclutely convergent $\Leftrightarrow \sum y_{n}$ absalutely convegent
(b) If $\underline{\gamma=0}$ and Σy_{n} absoletely connergent,
then $\begin{aligned} \Sigma x_{n} \text { is absolectely convergent (only } \Sigma y_{n} & \Rightarrow \sum x_{n} \\ & \text { in thin case })\end{aligned}$
Pf: Recall Limit Compaison Test (Thm 3.7.8) that if $x_{n}, y_{n}>0, r=\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}$ exists.
then, $\left\{\begin{array}{l}\text { If } r \neq 0, \Sigma x_{n} \text { canceres } \Leftrightarrow \sum y_{n} \text { canvers } \\ \text {. If } r=0, \sum y_{n} \text { converys } \Rightarrow \sum x_{n} \text { convergs. }\end{array}\right.$
Applying Thm 3.7 .8 to $\sum\left|x_{n}\right|$ \& $\sum\left|y_{n}\right|$

Recall ollso Compmison Test (Thm3.7.7): $0 \leqslant x_{n}<y_{n}, \forall n \geqslant k$ (fa some $\left.K \in \mathbb{N}\right)$
then $\left\{\begin{array}{l}\text { (a) } \sum y_{n} \text { caneges } \Rightarrow \sum x_{n} \text { converges }\end{array}\right.$
(b) $\sum x_{n}$ diveges $\Rightarrow \sum y_{n}$ diveges.

Thm9.2.2 (Root Test) (Cauchy)
(a) If $\exists r<1$ and $k \in \mathbb{N}$ sit.

$$
\left|x_{n}\right|^{\frac{1}{n}} \leqslant r, \quad \forall n \geqslant k,
$$

Hen $\sum x_{n}$ is absolutely convergent.
(b) If $\exists k \in \mathbb{N}$ st.

$$
\left|x_{n}\right|^{\frac{1}{n}} \geqslant 1, \quad \forall n \geqslant k,
$$

then $\sum x_{n}$ is divergent.
Pf: (a) If $\left|x_{n}\right|^{\frac{1}{n}} \leqslant r, \forall n \geqslant K$
then $\left|x_{n}\right| \leqslant r^{n}, \forall n \geqslant K$
Since $\sum r^{n}$ is convergent $f_{u} 0 \leqslant r<1$,
Comparison Test 3.7.7 $\Rightarrow \Sigma\left|x_{n}\right|$ is convergent.
(b) If $\left|x_{n}\right| \frac{1}{n} \geq 1$, then $\left|x_{n}\right| \geqslant 1, \forall n \geqslant K^{\prime}$

$$
\Rightarrow x_{y} \rightarrow 0 \text { as } n \rightarrow \infty
$$

$\Rightarrow \sum X_{n}$ is divergent ($n^{\text {th }}$ Term Test 3.7.3)

Cor 9.2.3 Suppress $r=\lim _{n \rightarrow \infty}\left|x_{n}\right|^{\frac{1}{n}}$ exists.
Then $\left\{\begin{aligned} \quad \frac{r<1}{r>1} & \Rightarrow \sum x_{n} \text { is absolutely convergent }\end{aligned}\right.$

- $r>1 \Rightarrow \sum x_{n}$ is divergent.
(No conclusion fer $r=1$. see Egi,2.7(b) later)

Pf: If $r<1$, then $\forall r<r_{1}<1, \exists K \in \mathbb{N}$ st.

$$
\left.\left.\right|_{n}\right|^{\frac{1}{n}} \leqslant r_{1}<1, \forall n \geqslant k,
$$

then part (u) of Root Test $\Rightarrow \sum x_{a}$ absolutely convergent.
If $r>1$, then $\exists K \in \mathbb{N}$ sit.

$$
\left|x_{n}\right|^{\frac{1}{n}}>1, \forall n \geq k,
$$

then pout (b) of Root Test $\Rightarrow \sum x_{n}$ divergent.

The 9.2.4 (Ratio Test) (D'Alembert)
Let $x_{n} \neq 0, \forall n=1,2,3, \cdots$
(a) If $\exists 0<r<1$ and $k \in \mathbb{N}$ st.

$$
\left|\frac{x_{n+1}}{x_{n}}\right| \leqslant r, \quad \forall n \geqslant k .
$$

then $\sum x_{n}$ is absolutely convergent
(b) If $\exists K \in \mathbb{N}$ sit.

$$
\left|\frac{x_{n+1}}{x_{n}}\right| \geqslant 1, \quad \forall n \geqslant k,
$$

then $\sum x_{n}$ is divergent.

Pf: (a) $\forall n \geqslant k, \quad\left|x_{n}\right| \leqslant r\left|x_{n-1}\right| \leqslant r^{2}\left|x_{n-2}\right| \leqslant \cdots \leqslant r^{n-k}\left|x_{k}\right|$
If $0<r<1$, then $\sum y_{n}=\sum r^{n-k}\left|x_{k}\right|=\frac{\left|x_{k}\right|}{r^{k}} \sum r^{n}$ is concregent Comparison Test 3.7.7 $\Rightarrow \sum\left|x_{n}\right|$ is convergent.
ice. EXa is absolutely convergent.
(b) $\quad \forall n \geqslant k, \quad\left|x_{n}\right| \geq\left|x_{n-1}\right| \geqslant\left|x_{n-2}\right| \geq \cdots \geqslant\left|x_{k}\right|$
$\therefore \quad x_{n} \ngtr 0$ as $n \rightarrow \infty \Rightarrow \sum x_{n}$ is divegent.

Cor 9.2.5 If $\left\{\begin{array}{l}\circ x_{n} \neq 0, \forall n=1,2,3, \cdots \text {, and } \\ \cdot r=\lim _{n \rightarrow \infty}\left|\frac{x_{n+1}}{x_{n}}\right| \text { exists }\end{array}\right.$
Then $\left\{\begin{array}{l}r<1 \Rightarrow \sum x_{4} \text { is absolutely convergent. } \\ 0 \quad r>1 \Rightarrow \sum x_{4} \text { is divengent }\end{array}\right.$
(No couclusion for $r=1$. see Eg9.2.7(c) later)
$P f:$ If $r<1$, then $\forall r, \in(r, 1), \exists K \in \mathbb{N}$ s.t.

$$
\left|\frac{x_{n+1}}{x_{n}}\right|<r_{1}<1, \quad \forall n \geqslant k
$$

$\operatorname{Part}(a)$ of Thm 9.2.4 $\Rightarrow \sum x_{n}$ is absolutely conveyent,
If $r>1$, then $\exists k \in \mathbb{N}$ s.t.

$$
\left|\frac{x_{n+1}}{x_{n}}\right|>1, \forall n \geq k
$$

Paut (b) of Thm $9.2 .4 \Rightarrow \sum X_{n}$ is divengent.

The Integral Test
Def (Improper Integral)
Fur $a \in \mathbb{R}$, if, $f \in R[a, b], \forall b>a$, and

$$
\text { 1. } \lim _{b \rightarrow+\infty} \int_{a}^{b} f \text { exists (and }<+\infty \text {.) }
$$

then the improper integral $\int_{a}^{\infty} f$ is defined to be

$$
S_{a}^{\infty} f=\lim _{b \rightarrow+\infty} \int_{a}^{b} f
$$

The 9.2 .6 (Integral Test)
Let $f(t)>0$, decreasing on $\{t \geqslant 1\}$.
Then $\sum_{k=1}^{\infty} f(k)$ converges $\Leftrightarrow \int_{1}^{\infty} f=\lim _{b \rightarrow+\infty} \int_{1}^{b} f$ exists.
In this case,

$$
\int_{n+1}^{\infty} f(t) d t \leqslant \sum_{k=1}^{\infty} f(k)-\sum_{k=1}^{n} f(k) \leqslant \int_{n}^{\infty} f(t) d t, \quad \forall n=1,2, \cdots
$$

Pf:

$f>0$ \& deceasing $\Rightarrow \forall k=2,3, \cdots$

$$
f(k) \leqslant \int_{k-1}^{k} f(t) d t \leqslant f(k-1) \quad-(*)_{1}
$$

$$
\begin{aligned}
\Rightarrow \sum_{k=2}^{n} f(k) \leqslant \sum_{k=2}^{n} \int_{k-1}^{k} f(t) d t \leqslant & \sum_{k=2}^{n} f(k-1) \\
& f(1)+\cdots+f(n-1)
\end{aligned}
$$

Let $S_{n}=\sum_{k=1}^{n} f(k)$
Then, we have

$$
\begin{aligned}
& S_{n}-f(1) \leqslant \int_{1}^{n} f(t) d t \leqslant S_{n-1} . \\
& \therefore \quad \lim _{n \rightarrow \infty} S_{n} \text { exists } \Leftrightarrow \lim _{n \rightarrow \infty} \int_{1}^{n} f(t) d t \text { exists (id, increasing) }
\end{aligned}
$$

will be proved next twice

Using (*) 1 again, if $m>n$, then

$$
\begin{aligned}
& \sum_{k=n+1}^{m} f(k) \leqslant \sum_{k=n+1}^{m} \int_{k-1}^{k} f(t) d t \leqslant \sum_{k=n+1}^{m} f(k-1) \\
\Rightarrow \quad & S_{m}-S_{n} \leqslant \int_{n}^{m} f(t) d t \leqslant S_{m-1}-S_{n-1}
\end{aligned}
$$

Hence, $\forall m>n$, we have

$$
\int_{n+1}^{m+1} f(t) d t \leqslant S_{m}-S_{n} \leqslant \int_{n}^{m} f(t) d t
$$

letting $m \rightarrow \infty$, we have

$$
S_{n+1}^{\infty} f(t) d t<S-S_{n} \leqslant \int_{n}^{\infty} f(t) d t
$$

Where $S=\sum_{k=1}^{\infty} f(k)$.

