\$8.4 The Trigonometric Functions
Thur 8.4.1
$$\exists$$
 functions C: $\mathbb{R} \Rightarrow \mathbb{R}$ and S: $\mathbb{R} \Rightarrow \mathbb{R}$ such that
(i) C''(x) = - C(x) and S''(x) = -, S(x), $\forall x \in \mathbb{R}$.
(i) C(0) = 1 and S(0) = 0
(ii) C'(0) = 0 S(0) = 1
Pf: Define Cn(x) and Sn(x) inductively by
 $\begin{cases} C_1(x) = 1 \\ S_1(x) = x \\ S_1(x) = x \end{cases}$
 $\begin{cases} S_1(x) = x \\ C_{n+1}(x) = 1 - \int_0^x S_n(x) dx \\ C_{n+1}(x) = 1 - \int_0^x S_n(x) dx \end{cases}$
(i.e. starting with $C_1 = x \\ S_1 = x \\ S_2 = x \\ S_3 = x \\ S_1 = x \\ S_1 = x \\ S_2 = x \\ S_3 = x \\ S_1 = x \\ S_2 = x \\ S_3 = x \\ S_1 = x \\ S_2 = x \\ S_3 = x \\ S_1 = x \\ S_2 = x \\ S_3 = x \\ S_1 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_3 = x \\ S_1 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_1 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_2 = x \\ S_1 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_1 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_1 = x \\ S_1 = x \\ S_2 = x \\ S_1 = x \\ S_1 = x \\ S_2 = x \\ S_1$

 $S'_{n}(x) = C'_{n}(x)$ & $C'_{n+1}(x) = -S'_{n}(x)$, $\forall x \in \mathbb{R}$, $\forall n$

 $\frac{\text{Clain}}{S_{n+1}}: \begin{cases} C_{n+1}(x) = 1 - \frac{\chi^2}{2!} + \frac{\chi^4}{4!} - \dots + (-1)^n \frac{\chi^{2n}}{(2n)!} \\ S_{n+1}(x) = x - \frac{\chi^3}{3!} + \frac{\chi^5}{5!} - \dots + (-1)^n \frac{\chi^{2n+1}}{(2n+1)!} \end{cases}$ Pf: (Ex! By induction) let A>0. If XEEA, AJ and M>N>ZA, $\left(\begin{array}{c} A \\ \frac{A}{2N}, \frac{A}{2M} < \frac{1}{4} \right)$ (ie. IXI < A) then $\left(C_{M}(x) - C_{N}(x)\right) = \left[(-1)^{N} \frac{x^{2N}}{(2N)^{1}} + \dots + (-1)^{N-1} \frac{x^{2(N-1)}}{(2(N-1))^{1}}\right]$ $\leq \frac{A^{2N}}{(2N)!} + \dots + \frac{A^{2N-2}}{(2N-2)!}$ $=\frac{A^{2N}}{(2N)!}\left[1+\frac{(2N)!}{(2(N+1))!}A^{2}+\frac{(2N)!}{(2(N+2))!}A^{4}+\cdots+\frac{(2N)!}{(2(N-1))!}A^{2}\right]$ $\leq \frac{A^{2N}}{(2N)!} \left[\left[1 + \frac{A^2}{(2N)^2} + \frac{A^4}{(2N)^4} + \dots + \frac{A^{2(M-1-N)}}{(2N)^{2(M-1-N)}} \right] \right]$ $\leq \frac{A^{2n}}{(2n)!} \left[\left[\left(+ \left(\frac{1}{4} \right)^2 + \left(\frac{1}{4} \right)^4 + \dots + \left(\frac{1}{4} \right)^{2(m-(-n))} \right] \right]$ $< \frac{16}{15} - \frac{A^{24}}{6100}$ Since lin Arri = 0 Cauly Criterion for Uniform Convergence Cn converges uniformly on E-A,A], VA>0 inglies

And hence, CN(X) converges YXER. $C(x) = \lim_{n \to \infty} C_n(x)$ let Then Cn converges uniformly to C on I-A, AJ, VA>0. Hence Thru 8.2.2 => C is cts on FA, AJ, VA>0 and therefore, C is cts on PR Moreover, $C_n(0) = 1$, $\forall n \implies C'(0) = 1$. Since $S'_n(x) = \int_{-\infty}^{\infty} C_n(t) dt$ $S'_{M}(x) - S'_{n}(x) = S'_{n}(C_{n}(t) - C'_{n}(t))dt$ $\Rightarrow |S'_{m}(x) - S'_{n}(x)| \leq S_{o}^{\times} |C'_{m}(t) - C'_{n}(t)| dt \quad y \neq x \geq 0$ (Cor 7.3.15) $\left(\int_{\infty}^{\infty}\left[c_{m}(t)-c_{n}(t)\right]dt, \chi \times 0\right)$ Then for XET-A, AI & M>N>ZA, $|S_{n}(x) - S_{n}(x)| \leq \int_{0}^{x} \frac{16}{15} - \frac{A^{2n}}{(2n)!} dt$ $\leq \frac{16}{15}, \frac{A^{2n}}{(2n)!}, A \quad (Similarly for \int_{x}^{0}...)$ $\rightarrow 0 \quad \text{as } n \rightarrow \infty$ - Sn converges uniformly on [-A, A], VA>0. ⇒ S_(X) Converges VXER.

let
$$S(k) = \lim_{n \to \infty} S_n(k)$$
, $\forall x \in \mathbb{R}$
Then S_n converges winformly to S on $(-A, A]$, $\forall A > 0$.
By Thur 8.2.2, S is ato on $(\mathbb{R} (ao S_n \ cto on (\mathbb{R}, \forall a))$
Strice $S_n(0) = 0$, $\forall n$, we have $S(0) = 0$.
Now by Fundamental Thrn of Calculus,
 $C'_n(x) = -S'_{n-1}(x) \Rightarrow -S(k)$ on $(-A, A]$, $\forall A > 0$
 $(uinform)$
Thus 8.2.3 \Rightarrow
 $C(k) = \lim_{n \to \infty} C_n(k)$ is differentiable and
 $C'(x) = -S(x)$ on $(-A, A]$, $\forall A > 0$
Hence C is differentiable $\forall x \in \mathbb{R}$ and
 $C'(x) = -S(x)$, $\forall x \in \mathbb{R}$.
In potential, $C'(0) = -S(0) = 0$
Similarly, Fundamental Thun
 $\Rightarrow S'_n(x) = C_n(x) \Rightarrow C(x)$ on $(-A, A]$, $\forall A > 0$
 $\vdots (Ex!)$
 \Rightarrow S is differentiable $\forall x \in \mathbb{R}$ and
 $S'(x) = C_n(x) \Rightarrow C(x)$ on $(-A, A]$, $\forall A > 0$
 $\vdots (Ex!)$
 \Rightarrow S is differentiable $\forall x \in \mathbb{R}$ and
 $S'(x) = C(x)$, $\forall x \in \mathbb{R}$.
The porticular, $S'(0) = C(0) = 1$.

Finally, combining the z formulae of 1st derivatives, we have

$$C''(x) = -S'(x) = -C(x) = -S(x)$$
.