Thm 73.14 (Composition Thenem)
Let, $\cdot f \in R[a, b]$ with $f([a, b]) \subset[c, d]$,

- $\varphi:[c, d] \rightarrow \mathbb{R}$ contūurus $\quad([a, b] \xrightarrow{\stackrel{f}{\rightarrow}[c, d] \xrightarrow{\varphi}} \mathbb{R})$

Then $\varphi \circ f \in R[a, b]$.
(" φ cts" is needed, see ex .7.3.22)
Pf: Let $D=$ set of dis contimacity of f on $[a, b]$,

$$
D_{1}=\text { set of discontinuity of } \varphi_{0} f \text { on }[a, b] \text {. }
$$

If $u \in[a, b] \backslash D$, then f is cartinuas at u,
Since φ is cts, φ of is also continuous at u.

$$
\therefore \quad u \in[a, b] \backslash D_{1}
$$

Therefore $[a, b] \backslash D \subset[a, b] \backslash D_{1}$, and hence $D, \subset D$.

Note that $f \in R[a, b]$. Lebesgue's Integrable Criterion
$\Rightarrow D$ is of measure zero.
$\Rightarrow \forall \varepsilon>0, \exists$ computable collection of open intervals $\left\{I_{k} \zeta_{k=1}^{n}\right.$
st. $D \subset \bigcup_{k=1}^{\infty} I_{k} \& \sum_{k=1}^{\infty} \operatorname{length}\left(I_{k}\right) \leqslant \varepsilon$.

Süce $D_{1} C D$, we have

$$
D_{1} \subset \bigcup_{k=1}^{\infty} I_{k} \quad \& \quad \sum_{k=1}^{\infty} \text { lougtt }\left(I_{k}\right) \leqslant \varepsilon
$$

$\therefore D_{1}$ is also of measure zero.
Using Lobesque's Integrability criterion again, we have

$$
\varphi \circ f \in R[a, b]
$$

(In this proof, we showed that a subset of a null set is also a null set.)

Cor 7.3.15 If $f \in R[a, b]$, then $|f| \in R[a, b]$
and $\quad\left|\int_{a}^{b} f\right| \leqslant \int_{a}^{b}|f| \leqslant M(b-a)$
fa any $M \geqslant 0$ sit. $|f(x)| \leqslant M$ on $[a, b]$
Pf: $f \in \nabla[a, b] \Rightarrow f$ is bounded

$$
\Rightarrow \quad|f(x)| \leqslant M \text { on }[a, b] \quad \text { fa some } M>0
$$

Then $f([a, b]) \subset[-M, M]$ and

$$
1 \cdot 1:[-M, M] \rightarrow \mathbb{R} \text { is continuous. }
$$

By TAm $7.3 .14, \quad|f| \in R[a, b]$
Since $-|f|(x) \leqslant f(x) \leqslant|f|(x), \forall x \in[a, b]$,

$$
\begin{aligned}
\operatorname{Thm} F_{1} \mid 5(c) & \Rightarrow-\int_{a}^{b}|f| \leqslant \int_{a}^{b} f \leqslant \int_{a}^{b}|f| \\
& \therefore\left|\int_{a}^{b} f\right| \leqslant \int_{a}^{b}|f| .
\end{aligned}
$$

Sinilarly, $|f|(x) \leqslant M \quad \forall x \in[a, b]$

$$
\Rightarrow \quad S_{a}^{b}|f| \leqslant \int_{a}^{b} M=M(b-a)
$$

Thm 7.3.16 (The Product Thm) If $f \& g \in R[a, b]$, then $f g \in R[a, b]$.
Pf: $f \in R[a, b] \Rightarrow \exists M>0$ s.t. $f([a, b]) \subset[-M, M]$.
and $\varphi(t)=t^{2}:[-M, M] \rightarrow \mathbb{R}$ is cts

$$
\therefore \quad f^{2} \in R[a, b] .
$$

Similarly $g \in R[a, b] \Rightarrow g^{2} \in R[a, b]$.
By Thm $7.15(b), f, g \in R[a, b] \Rightarrow f+g \in R[a, b]$.
Hence $(f+g)^{2} \in \mathcal{R}[a, b]$.
Therefue, Thm 7.15 again, $\quad f g=\frac{1}{2}\left[(f+g)^{2}-f^{2}-g^{2}\right] \in \mathbb{R}[a, b]$

The 7.3.17 (Integration by Parts)
Let $\circ F, G$ be differentiable on $[a, b]$

- $f=F^{\prime}, g=G^{\prime} \in R[a, b]$

Then $f G, F g \in R[a, b]$ and

$$
\int_{a}^{b} f G=\left.F G\right|_{a} ^{b}-\int_{a}^{b} F g
$$

Pf: F, G diff on $[a, b] \Rightarrow F, G$ cts on $[a, b]$

$$
\Rightarrow F, G \in \mathbb{R}[a, b] \quad(\operatorname{Thm} 7.2 .7)
$$

Product The 7.3.16 then replies

$$
f G \& F g \in R[a, b]
$$

And product rule Thu 6.1.3(c),

$$
(F G)^{\prime}=F^{\prime} G+F G^{\prime}=f G+F g \in R[a, b]
$$

Fundamental $\operatorname{Tim} 7.3 .1 \Rightarrow$

$$
\begin{aligned}
& \int_{a}^{b}(F G)^{\prime}=\left.F G\right|_{a} ^{b} \\
\therefore \quad & \int_{a}^{b} f G+\int_{a}^{b} F g=\left.F G\right|_{a} ^{b}
\end{aligned}
$$

The 73.18 (Taylor's The with Remainder (Integral Form))
Suppose . $f=[a, b] \rightarrow \mathbb{R}$

- $f^{\prime}, \cdots, f^{(n)}, f^{(n+1)}$ exist on $[a, b]$
- $f^{(n+1)} \in R[a, b]$

Then $f(b)=f(a)+\frac{f^{\prime}(a)}{1!}(b-a)+\cdots+\frac{f^{(n)}(a)}{n!}(b-a)+R_{n}$
where $\quad R_{n}=\frac{1}{n!} \int_{a}^{b} f^{(n+1)}(t)(b-t)^{n} d t$.

Pf:

$$
\begin{aligned}
R_{n} & =\frac{1}{n!} \int_{a}^{b} f^{(n+1)}(t)(b-t)^{n} d t \quad \quad \quad \text { is defined by Product Thu) } \\
& =\int_{a}^{b}\left(f^{(n)}\right)^{\prime}(t)\left(\frac{(b-t)^{n}}{n!}\right) d t \quad \quad \text { (Integration by Parts) } \\
& =\left.f^{(n)}(t) \frac{(b-t)^{n}}{n!}\right|_{a} ^{b}-\int_{a}^{b} f^{(n)}(t)\left[-\frac{(b-t)^{n-1}}{(n-1)!}\right] d t \\
& =-\frac{f^{(n)}(a)}{n!}(b-a)^{n}+\frac{1}{(n-1)!} \int_{a}^{b} f^{(n)}(t)(b-t)^{n-1} d t \\
& =-\frac{f^{(n)}(a)}{n!}(b-a)^{n}+R_{n-1} \\
& =-\frac{f^{(n)}(a)}{n!}(b-a)^{n}-\frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{n-1}+R_{n-2} \quad \text { (calculation) }
\end{aligned}
$$

$$
=-\left(\frac{f^{(n)}(a)}{n!}(b-a)^{n}+\cdots+\frac{f^{\prime}(a)}{1!}(b-a)\right)+R_{0}
$$

where $R_{0}=\frac{1}{0!} \int_{a}^{b} f^{\prime}(t)(b-t)^{0} d t=\int_{a}^{b} f^{\prime}=f(b)-f(a)$
So we are done

