Cor7.2.10 If f ERTA, 6] & [C,d] CTA, b], then fERTE, d].

Pf = By Additionity Thm 7.2.5

 $fer(a,b] \Rightarrow fer(c,b] \Rightarrow fer(c,d) \approx$

$$\frac{(c_{1}+2.11)}{(c_{1}+2.11)} \text{ If } f \in \mathbb{R}[a,b] \text{ a } a = c_{0} < c_{1} < \cdots < c_{m} = b,$$

$$\text{Hen } f|_{C_{i-1},C_{i-1}} \in \mathbb{R}[C_{i-1},C_{i-1}] \text{ and}$$

$$\int_{a}^{b} f = \sum_{i=1}^{n} \int_{c_{i-1}}^{c_{i}} f$$

(Pf: By Induction)

$$\frac{Def}{F} = If f \in R[a,b] \text{ and } d, p \in [a,b] \text{ with } d < p,$$
we define $\int_{\beta}^{d} f \stackrel{def}{=} -\int_{x}^{\beta} f$ and
$$\int_{x}^{d} f \stackrel{def}{=} 0$$

$$\begin{pmatrix} e_{g}: \ \lfloor (\alpha, \beta, \gamma) = \int_{\alpha}^{\beta} f + \int_{\beta}^{\gamma} f + \int_{\gamma}^{\alpha} f \\ = -\int_{\beta}^{\alpha} f - \int_{\gamma}^{\beta} f - \int_{\alpha}^{\gamma} f = - \lfloor (\alpha, \gamma, \beta) \end{pmatrix}$$

By Additivity Thm 7.2.9, if d<r< B,

then
$$L(\alpha, \beta, r) = \int_{\alpha}^{\beta} f - (\int_{\alpha}^{r} f + \int_{\beta}^{r} f) = 0$$

By the above, we have $L(x, \beta, r) = 0$ fa all other situations: $x < \beta < a < \beta$ $x < \alpha < \beta$, $\alpha < \beta < r < \beta$.

Hence
$$\forall d, \beta, \gamma,$$

 $\mathcal{O} = L(d, \beta, \gamma) = \int_{a}^{\beta} f - \left(\int_{a}^{\gamma} f + \int_{\gamma}^{\beta} f\right)$
i.e. $\int_{a}^{\beta} f = \int_{a}^{\gamma} f + \int_{\gamma}^{\beta} f$

\$7.3 The Fundamental Theorem

Recall: A function
$$F: [a,b] \rightarrow IR$$
 is called an antiderivative
or a primitive of $f: [a,b] \rightarrow IR$ on $[a,b]$ if
 $F'(x) = f(x)$, $\forall x \in [a,b]$
(One sided derivatives at $x=a \in x=b$)

Thm 7.3.1 (Fundamental Theorem of Calculus (1st Form))
Suppose {
•
$$f_{,}F : [a,b] \rightarrow |R_{,} functions,$$
Suppose {
• $E = finite set of [a,b]$ ($E f_{a} exceptional set$)
($a_{,}F is contained on [a,b],$
($b_{,}F'(x) = f(x) \forall x \in [a,b] \setminus E,$
($c_{,}f \in R[a,b]$
Then
$$\int_{a}^{b} f = F(b) - F(a)$$

Then by Thm 7.1.3 & Thm 7.2.9, one can reduce the proof
of the Thm to the case that
$$E = \{a, b\}$$
 two end points only
i.e. $F(x) = f(x), \forall x \in (a, b)$.
(EXENDSE 7.3.1 of the Textbook, using Fide $\sum_{i=1}^{n} F(x_i) - F(x_{i-1}) = F(a) - F(a)$)
For this special case, consider any $E > 0$.
Then $f \in R[a_j, b]$ (assumption $(C_j) \Rightarrow$
 $\exists \delta_E > 0$ such that
 $\exists \delta = \{[x_{i-1}, x_i], t_i\}_{i=1}^n$ satisfies $||\mathcal{D}|| < \delta_E$, (any tags d_i)
then $|S'(f, \mathcal{D}) - S_a^b f| < E$. (*)
By Mean Value Thm 6.24, $\exists u_i \in (x_{i-1}, x_i) st$.
 $F(x_i) - F(x_{i-1}) = F(u_i)(x_i - x_{i-1})$
 $= f(u_i)(x_i - x_{i-1}), \quad \forall i = 1, \dots, n$
since $F(-f) = \sum_{k=1}^n [E(x_k) - F(x_{i-1})]$
 $= \sum_{k=1}^n f(u_k)(x_k - x_{k-1})$

Define the tagged partition $\mathcal{D}_u = \langle [x_{i-1}, x_i], u_i \rangle_{i=1}^n$ (some partition with new tags) Then || Pull < JE and $F(b) - F(a) = S(f, \mathcal{P}_{u})$.'. $|F(b) - F(a) - \int_{a}^{b} f(x) dx + \int_{a}$ Since E>0 is arbitrary, $S_{a}^{b}f = F(b) - F(a)$ <u>Remarks</u>: (i) If $E = \emptyset$, then assumption (b) =) assumption (a). (ii) One may allow f defined on [a, b] except finite number of points as one can extend f to all xE[a,b] by setting f(c) = 0 for C & domain (f) originally. (III) F differentiable on [a,b] => F' & R[a,b] ... assumption (C) is not automatically satisfied even $E = \phi \& assumption (b)$ is satisfied. (Eq. J. 3. 2 (e))

Eg73.²
(a) • F(x)=
$$\pm x^2$$
, $\forall x \in [a,b]$ is contained on $[a,b]$,
• F(x) = x, $\forall x \in [a,b]$ (... $E = \phi$)
• F(x) = x $\in \partial E[a,b]$ (says by $7bm$ 7.2.7, $db \Rightarrow \tilde{u}tgenble$)
-... $\int_{a}^{b} \times dx = F(b) - F(a) = \pm (b^2 - a^2)$.
(b) Suppose $[a,b]$ is a classed interval s.t. (Arctam $x = tau^{-1}x$)
G(x) = Arctam X is defined on $[a,b]$ (finitestame $[a,b] \in (-\frac{1}{2}, \frac{1}{2})$)
Then $G'(x) = \frac{1}{x^2 + 1}$, $\forall x \in [a,b] \in x$ is $\frac{cantinens}{2}$ on $[a,b]$
-... (b) satisfiest with $E = \phi$. (with $f(x) = \frac{1}{x^{4}t}$)
Hence (a) satisfied automatically.
And Thm 7.2.7 \Rightarrow (c) is also satisfied.

$$\int_{a}^{b} \frac{dx}{x^{2}+1} = \operatorname{Arctan} b - \operatorname{Arctan} a$$
.

(c)
$$A(x) = |x|$$
 for $x \in E = 10, 103$. cts.
(one can do any $E x, p = with d, p > 0$)
Then
 I , for $x \in (0, 10]$
 $A'(x) = \begin{cases} dream't exist, for $x = 0$
 -1 , for $x \in E = 10, 0$)$

$$\begin{array}{l} \text{Recall the signum function} \\ & 1, & x > 0 \\ & \text{agn}(x) = \left\{ \begin{array}{c} 0, & x = 0 \\ -1, & x < 0 \end{array} \right. \end{array}$$

-.
$$A'(x) = Agn(x)$$
 $\forall x \in F(0, 0] \setminus \{0\}$ $(F = \{0\})$
 $i \text{ Note that } Agn(x)$ is a Step function, (or different from a step function,)
 $at \text{ one point.}$
Thue $F.2.5 \Rightarrow Agn(x) \in RF(0, 0]$.
Hence $\int_{-10}^{10} Agn(x) dx = A(10) - A(-10) = (0 - 10) = 0$.

(d)
$$H(x) = 2JX$$
 on $TO_{,b}J_{,}$
Then $H(x)$ its on $TO_{,b}J_{,}$
 $H'(x) = \frac{1}{JX} \quad \forall x \in (0, bJ) \quad (E=\{0\})$

Note that
$$h(x) = \frac{1}{\sqrt{x}}$$
 is unbounded on $[0,b]$,
 $f_1 \notin R[0,b]$ (No matter from we define $(H(0))$)
.'. Fundamental Thm 7.3.1 doesn't apply !
(Need to cansider improper integrals, which is equivalent to
applying Thm 7.3.1 to $[E,b]$, and then Datting $E \rightarrow 0$.)

(e)
$$K(x) = \begin{cases} x^2 \omega_x(\frac{1}{x^2}), x \in (0, 1] \\ 0, x = 0 \end{cases}$$

Then
 $K(x) = \begin{cases} 2x(\omega_x) + \frac{2}{x} \omega_x(\frac{1}{x^2}), x \in (0, 1] \\ 0, y = 0 \end{cases}$ (eg 6.1.7(cs))
That $\tilde{\omega}_x \in differentiable on [0, 1], & flowe of on [0, 1].$
However $K' \tilde{\omega}$ unbounded and
therefore $K' \notin \mathbb{R}[0, 1]$, assumption (c) doesn't satisfy!

Thur F.I.5 (C)
$$\Rightarrow$$
 $-M(z-w) \leq S_w^2 \leq M(z-w)$
 $\therefore (F(z)-F(w)) = |S_w^2 \leq M(z-w) = M(z-w)$
(Since $w \leq z$)
(Since $w \leq z$)

$$\frac{Thm 7.35}{Fundamental Theorem of Calculus (2nd Form)}$$
Let $f \in \mathcal{R}(a,b]$ and continuous at C.
Then $F(z) = \int_{a}^{z} f$ is differentiable at $z=c$ and $F'(c) = f(c)$.

PS We'll prove only for the right-hand downative

$$\lim_{R\to0^+} \frac{F(c+R) - F(c)}{R} = f(c)$$
The left-hand derivative can be handled similarly.
Threfue, we assume c ∈ [a,b].
Since f is continuous at c, $\forall \in 20, \exists \eta_e > 0$ s.t. if
 $(\forall) [f(x) - f(c)] < \varepsilon, \forall x \in [c, c+\eta_{\varepsilon}].$ (consider only right side)
let $h \in (0, \eta_{\varepsilon})$, then Additivity Thm 7.28 (cor 7.2.10)
 $\Rightarrow f \in \mathcal{R}[a, c+R], \mathcal{R}[a, c] \in \mathcal{R}[c, c+R]$ and

$$\int_{a}^{cth} f = \int_{a}^{c} f + \int_{c}^{cth} f$$
i.e. $F(cth) - F(c) = \int_{c}^{cth} f$
By (x) $f(c) - \varepsilon < f(x) < f(c) + \varepsilon$, $\forall x \in [c, c+\eta_{\varepsilon})$
we have $(f(c) - \varepsilon) + \varepsilon < \int_{c}^{cth} f \le (f(c) + \varepsilon) + \varepsilon$,
which implies
$$f(c) - \varepsilon \le \frac{F(cth) - F(c)}{\pi} \le f(c) + \varepsilon$$

$$\Rightarrow \left| \frac{F(cth) - F(c)}{\pi} - f(c) \right| \le \varepsilon, \quad \forall h \in (0, \eta_{\varepsilon})$$
If proves that
$$\int_{R \to 0^{+}}^{cth} \frac{F(cth) - F(c)}{\pi} = f(c)$$

$$K$$

$$Thm f.3.6 \quad F(x) = \int_{a}^{x} f \circ differentiable on [a,b], and
$$F(x) = \int_{a}^{x} f(x) , \quad \forall x \in [a, b]$$$$

 $Pf: f cts m Ta, b] \Rightarrow fe & [a, b] & cts at every pt. <math>C \in [a, b]$

Eg. 7.3.7
(a)
$$f(x) = Agn \times m [-], IJ$$
.
Then $\bullet f \in \mathcal{R}[C], IJ$ (step function with a dynamided interal)
 $\bullet f$ not cartinuous at $x=0$, but cartinum $\forall x \in [-], IJ \setminus [0]$.
Subject calculation: indefinite integral with basepoint -1 is
 $F(x) = \int_{-1}^{x} Agn(x) dx = |x| - 1$ (Ex !)
One can see that $F'(0)$ doesn't exist ($\int_{1}^{u} f dx = \int_{0}^{x} dx = \int_{0}^{x} Agn(x) dx = \int_{0}^{x}$

Chain rule)

Eg 7,3.9 Too easy, Owitted

Lebesque's Integrability Criterion

<u>Def 7.3.10</u> (a) A set ZCR is said to be a <u>null set</u> (<u>set of measure sero</u>) if VE70, I a countable collection 1(ak, bk) Sk=1 of open intervals (could be overlapped) such that $Z \subseteq \bigcup_{k=1}^{\infty} (a_k, b_k)$ and $\sum_{k=1}^{\infty} (b_k - a_k) \leq \varepsilon$ k=1 Length of interval (a_k, b_k) (b) If Q(X) is a statement about XEI, we say that " Q(x) holds almost everywhere on I (or "O(x) holds for <u>almost every</u> (<u>almost all</u>) x ∈ I") if I a <u>null set</u> ZCI st. Q(X) holds V XEILZ. In this case, we write Q(x) for a.e. XEI. <u>Remarks</u>: (i) "null set" may means "empty set" for some people. So "set of measure zero" is used more often. (ii') Defa) means Z can be covered by a set of <u>arbitrary</u> small total longth. (Kond of "length of Z = 0", but it is difficult to define "longth" of antitrary sets in IR_)

 $\underline{\text{Eg F.3.11}}$ $\underline{\text{G2}}_{1} = \text{set of rational numbers in [0,1] is a null set.}$ (set of measure zero)

Pf: G1 is countable and can be written as Given E>O, define open intervals $J_{k} = \left(r_{k} - \frac{\varepsilon}{2^{k+1}}, r_{k} + \frac{\varepsilon}{2^{k+1}}\right), \quad k = 1, 2, \cdots$ Clearly $r_k \in J_k$ and $lugth of J_k = \frac{\varepsilon}{2k}$ Serve E>O is arbitrary, Q, is a null set. From the proof, it is clear that it doesn't use the fact that "k are rational. Hence, the proof can be used to prove that :

("courtable infinite" can be proved similarly, "countable finite" are included by dropping the tail of the infinite series)

Hence, it is a null set.

: Lebesque's Integrability intervior => it is Riemann integrable

(c)
$$(eg = 1, 1, 4(d))$$

 $G(x) = \begin{cases} n, if x = n \quad (n = 1, 3, ...) \\
0, elsewhere on [0, 1] \\
is bounded, and
Set of discontinuity = $\{1, \frac{1}{2}, \frac{1}{3}, ...\}$
is cauntable dence measure sero.
Isbasque's Integrability entenion \Rightarrow $G(x)$ is Riemann integrable
(d) $(Eg = 7.2.2 \text{ (b)}, not integrable)$
Divichlet function $f(x) = \begin{cases} 1, if x \text{ rational}, x \in [0, 1] \\
0, if x invational, x \in [0, 1]. \end{cases}$
is bounded.
set of discontinuity = $[0, 1]$ (discontinuous at every $x \in [0, 1]$)
which can be shown that it is not a null set (Omitted)
 \therefore Isbasque's Integrability entenion \Rightarrow
Divichlet function is not Riemann integrable.$