Cor 7.2.10 If $f \in R[a, b] \&[c, d] \subset[a, b]$, then $f \in R[c, d]$.
$P f=$ By Additivity Thu 7.2.9

$$
f \in R[a, b] \Rightarrow f \in R[c, b] \Rightarrow f \in R[c, d]
$$

Cor7.2.II If $f \in R[a, b] \& a=c_{0}<c_{1}<\cdots<c_{m}=b$, then $\left.f\right|_{\left[c_{i-1}, c_{i}\right]} \in R\left[c_{i-1}, c_{i}\right]$ and

$$
\int_{a}^{b} f=\sum_{i=1}^{n} \int_{c_{i-1}}^{c_{i}} f
$$

(Pf: By Induction)

Def: If $f \in R[a, b]$ and $\alpha, \beta \in[a, b]$ with $\alpha<\beta$, we define $\int_{\beta}^{\alpha} f \stackrel{\text { def }}{=}-\int_{\alpha}^{\beta} f$ and

$$
\int_{\alpha}^{\alpha} f \stackrel{d f}{=} 0
$$

The 7.2.13 If $f \in R[a, b]$ and $\alpha, \beta, \gamma \in[a, b]$,

$$
\text { then } \quad \int_{\alpha}^{\beta} f=\int_{\alpha}^{\gamma} f+\int_{\gamma}^{\beta} f \quad(*)
$$

in the sense that the existence of any two of these integrals exist in plies the third integral exists \& (*) holds

Pf: Clearly Thm 7.2 .9 \& Cor 7.2.11 up lies the statement that "the existence of any two of these integrals exist
\Rightarrow the third integral exists".
Now if any two of α, β, γ equal, then (*) is trivially holds (check)

If α, β, γ are distinct, we consider

$$
\begin{aligned}
L(\alpha, \beta, \gamma) & \stackrel{d e f}{=} \int_{\alpha}^{\beta} f+\int_{\beta}^{\gamma} f+\int_{\gamma}^{\alpha} f \\
& =\int_{\alpha}^{\beta} f-\int_{\gamma}^{\beta} f-\int_{\alpha}^{\gamma} f
\end{aligned}
$$

Clearly $L(\alpha, \beta, \gamma)=L(\beta, \gamma, \alpha)=L(\gamma, \alpha, \beta)$
(cheder!)

$$
=-L(\alpha, \gamma, \beta)=-L(\gamma, \beta, \alpha)=-L(\beta, \alpha, \gamma)
$$

(eg:

$$
\begin{aligned}
L(\alpha, \beta, \gamma) & =\int_{\alpha}^{\beta} f+\int_{\beta}^{\gamma} f+\int_{\gamma}^{\alpha} f \\
& \left.=-\int_{\beta}^{\alpha} f-\int_{\gamma}^{\beta} f-\int_{\alpha}^{\gamma} f=-L(\alpha, \gamma, \beta)\right)
\end{aligned}
$$

By Additivity Thu 7.2.9, if $\alpha<r<\beta$, then $L(\alpha, \beta, \gamma)=\int_{\alpha}^{\beta} f-\left(\int_{\alpha}^{\gamma} f+\int_{\gamma}^{\beta} f\right)=0$.

By the above, we have $L(\alpha, \beta, \gamma)=0$
fa all other situations: $\gamma<\beta<\alpha, \beta<\alpha<\gamma$

$$
\gamma<\alpha<\beta, \alpha<\beta<\gamma, \& \quad \beta<\gamma<\alpha \text {. }
$$

Heme $\forall \alpha, \beta, \gamma$,

$$
O=L(\alpha, \beta, \gamma)=\int_{\alpha}^{\beta} f-\left(\int_{\alpha}^{\gamma} f+\int_{\gamma}^{\beta} f\right)
$$

ie. $\quad \int_{\alpha}^{\beta} f=\int_{\alpha}^{\gamma} f+\int_{\gamma}^{\beta} f$

S7.3 The Fundamental Theorem
Recall: A function $F:[a, b] \rightarrow \mathbb{R}$ is called an antiderivative a a primitive of $f:[a, b] \rightarrow \mathbb{R}$ on $[a, b]$ if

$$
F^{\prime}(x)=f(x), \quad \forall x \in[a, b]
$$

(One sided derivatives at $x=a \& x=b$)

Thy 7.3.1 (Fundamental Thenem of Calculus (1st Form))
Suppose $\left\{\begin{array}{l}\text { © } f, F=[a, b] \rightarrow \mathbb{R} \text { functions, } \\ 0 E=f \text { waite set of }[a, b] \quad \text { (E fa exceptional set) }\end{array}\right.$
(a) F is contüurees on $[a, b]$,
such that $\left\{\right.$ (b) $F^{\prime}(x)=f(x) \quad \forall x \in[a, b] \backslash E$,
(c) $f \in R[a, b]$

Then

$$
\int_{a}^{b} f=F(b)-F(a)
$$

Pf: With the finite \# of points in E,
 $[a, b]$ is subdivided into finite number of subintewals such that $F^{\prime}(x)=f(x)$ on the subiutervals except passible at endpoints.

Then by Thu 7.1 .3 \& Thu 7.2 .9 , one can reduce the proof of the The to the case that

$$
E=\{a, b\} \quad \text { two end points only }
$$

ie. $F^{\prime}(x)=f(x), \forall x \in(a, b)$.
(Exenise 7.3.1 of the Textbook, using F ats \& $\left.\sum_{i=1}^{n} F\left(x_{i}\right)-F\left(x_{i-1}\right)=F(b)-F(a)\right)$ Fr this special case, consider any $\varepsilon>0$.
Then $f \in R[a, b]$ (assumption (c))) \Rightarrow
$\exists \delta_{\varepsilon}>0$ such that
if $\dot{\gamma}=\left\{\left[x_{i-1}, x_{i}\right], x_{i}\right\}_{i=1}^{n}$ satisfies $\|\dot{\gamma}\|<\delta_{\varepsilon}$, (any tags t_{i})
then $\left|S(f, \dot{\gamma})-S_{a}^{b} f\right|<\varepsilon$. (t)
By Mean Value Thm 6.24, $\exists u_{i} \in\left(x_{i-1}, x_{i}\right)$ sit.

$$
\begin{aligned}
F\left(x_{i}\right)-F\left(x_{i-1}\right) & =F^{\prime}\left(u_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =f\left(u_{i}\right)\left(x_{i}-x_{i-1}\right), \quad \forall i=1, \cdots, n
\end{aligned}
$$

since $F^{\prime}=f$ exists on (a, b) (assumption (b) of the special case)
Hence $F(b)-F(a)=\sum_{i=1}^{n}\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right]$

$$
=\sum_{i=1}^{n} f\left(u_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

Refine the tagged partition $\dot{\theta}_{u}=\left\{\left[x_{i-1}, x_{i}\right], u_{i}\right\}_{i=1}^{n}$ (sane partition with now togs).
Then $\left\|\dot{\theta}_{u}\right\|<\delta_{\varepsilon}$ and

$$
\begin{aligned}
& F(b)-F(a)=S\left(f, \dot{\gamma}_{x}\right) \\
\therefore \quad & \left|F(b)-F(a)-S_{a}^{b} f\right|<\varepsilon, \text { by }(*)
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, $\quad S_{a}^{b} f=F(b)-F(a)$.

Remarks: (i) If $E=\varnothing$, then assumption (b) $\Rightarrow \operatorname{asscmuption}$ (a).
(ii) One may allow f defined on $[a, b]$ except füite number of pouiets as one can extend f to all $x \in[a, b]$ by setting $f(c)=0$ for $c \notin$ domain (f) originally.
(iii) F differentiable on $[a, b] \nRightarrow F^{\prime} \in Q[a, b]$
\therefore assumption (c) is not automatically satisfied even
$E=\phi$ \& assumption (b) is satisfied. (E g7.3.2(e))

Eg 73.?
(a). $F(x)=\frac{1}{2} x^{2}, \forall x \in[a, b]$ is contūnows on $[a, b]$,

- $F^{\prime}(x)=x, \forall x \in[a, b] \quad(\therefore E=\phi)$
- $F^{\prime}(x)=x \in R[a, b] \quad$ (says by Thm 7.2.7, ct \Rightarrow integrable)

$$
\therefore \quad \int_{a}^{b} x d x=F(b)-F(a)=\frac{1}{2}\left(b^{2}-a^{2}\right) .
$$

(b) Suppoe $[a, b]$ is a closed interval s.t. \quad (Arctan $x=\tan ^{-1} x$)
$G(x)=\operatorname{Arctan} x$ is defined on $[a, b] \quad\left(\right.$ fa unstance $[a, b] c\left(-\frac{\pi}{3}, \frac{\pi}{2}\right)$)
Then $G^{\prime}(x)=\frac{1}{x^{2}+1}, \forall x \in[a, b]$ \& is contūncors on $[a, b]$
\therefore (b) satified with $E=\varnothing$. (with $f(x)=\frac{1}{x^{2}+1}$)
Hence (a) satesfied automatically.
And Thm. $7.2 .7 \Rightarrow(C)$ is also satisfied.

$$
\therefore \quad \int_{a}^{b} \frac{d x}{x^{2}+1}=\operatorname{Arctan} b-\operatorname{Arctan} a .
$$

(c) $A(x)=(x)$ for $x \in[-10,10]$. Ats.
(one car do any $[\alpha, \beta]$ with $\alpha, \beta>0$)
Then

$$
A^{\prime}(x)= \begin{cases}1, & \text { fa } x \in(0,10] \\ \text { doean't exeat, } & \text { fo } x=0 \\ -1, & \text { fa } x \in[-10,0)\end{cases}
$$

Recall the signum function

$$
\begin{aligned}
& \operatorname{sgn}(x)= \begin{cases}1, & x>0 \\
0, & x=0 \\
-1, & x<0\end{cases} \\
&\left.\therefore \quad A^{\prime}(x)=\operatorname{sgn}(x) \quad \forall x \in[-10,10] \backslash 30\right\} \quad(E=\{0\})
\end{aligned}
$$

Note that $\operatorname{sgn}(x)$ is a step function, (or different from a step functions) at one point.

The 7.2.5 $\Rightarrow \operatorname{sgn}(x) \in R[-10,10]$.
(with me dereverected interval)

Hence $\quad \int_{-10}^{10} \operatorname{sgn}(x) d x=A(10)-A(-10)=10-10=0$.
(d) $H(x)=2 \sqrt{x}$ on $[0, b]$.

Then $H(x)$ cts on $[0, b]$,

$$
H^{\prime}(x)=\frac{1}{\sqrt{x}} \quad \forall x \in(0, b] \quad(E=\{0\})
$$

Note that $h(x)=\frac{1}{\sqrt{x}}$ is cmbounded on $[0, b]$,
$h \notin R[0, b]$ (No matter tiow we defier $H^{\prime}(0)$)
\therefore Fundamental The 7.3.1 doesn't apply!
(Need to consider improper integrals, which is equivalent to applying Thin 7.3 .1 to $[\varepsilon, b]$, and then letting $\varepsilon \rightarrow 0$.)
(e) $\quad K(x)= \begin{cases}x^{2} \cos \left(\frac{1}{x^{2}}\right), & x \in(0,1] \\ 0, & x=0\end{cases}$

Then

$$
K^{\prime}(x)=\left\{\begin{array}{ll}
2 x \cos \frac{1}{x^{2}}+\frac{2}{x} \sin \left(\frac{1}{x^{2}}\right), & x \in(0,1] \\
0, & \text { if } x=0
\end{array} \quad(\text { eg } 6,1,7(0))\right.
$$

That is, k differentiable on $[0,1]$, \& line cts on $[0,1]$. However K^{\prime} is mounded and
therefore $K^{\prime} \notin R[0,1]$, assumption (C) doan't satisfy!

Def 7.3.3: If $f \in R[a, b]$, then the function defined by

$$
F(z)=\int_{a}^{z} f \quad \text { fa } \quad z \in[a, b]
$$

is called the īdefuiste integral of f with basepoñt a.
(One may use other point as base point \& is still called indefinite integral (Ex7.3.6))

Thm 7.3.4 If $f \in \mathbb{R}[a, b]$, then

$$
F(z)=\int_{a}^{z} f \text { is contünoons on }[a, b]
$$

and in fact, if $|f(x)| \leqslant M, \forall x \in[a, b]$, then
(*) $\quad|F(z)-F(w)| \leqslant M|z-w|, \quad \forall z, w \in[a, b]$.
Remarks: (i) Mexiots because $f \in R[a, b] \Rightarrow f$ is bad
(ii) (*) is called a lipsclitecondition, much stronger than just continuity.

Pf $\forall z, w \in[a, b]$ with $w \leqslant z$, Additivity Thu $7.2 .9 \Rightarrow$

$$
\begin{aligned}
& F(z)=\int_{a}^{z} f=\int_{a}^{w} f+\int_{w}^{z} f=F(w)+\int_{w}^{z} f \\
\therefore \quad & F(z)-F(w)=\int_{w}^{z} f .
\end{aligned}
$$

If $\quad-M \leqslant f(x) \leqslant M, \forall x \in[a, b]$,

$$
\begin{aligned}
& \text { Tho } f 1,5(c) \Rightarrow-M(z-w) \leqslant \int_{w}^{z} f \leqslant M(z-w) \\
& \therefore \quad|F(z)-F(w)|=\left|\int_{w}^{z} f\right| \leqslant M(z-w)=M|z-w| \\
& \quad(\text { since } w \leqslant z)
\end{aligned}
$$

Clearly, the case $z \leqslant W$ follows invuldiately too.

Thu 7.35 (Fundamental Therem of Calculus (2nd Form))
Let $f \in R[a, b]$ and contunnoss at c.
Then $F(z)=\int_{a}^{z} f$ is differentiable at $z=c$ and

$$
F^{\prime}(c)=f(c)
$$

If Weill prove only for the right-hand dourvative

$$
\lim _{h \rightarrow 0^{+}} \frac{F(c+h)-F(c)}{h}=f(c)
$$

The left-hand derivative can be handled similarly.
Therefue, we assume $c \in[a, b]$.
Since f is contunalus at $c, \forall \varepsilon>0, \exists \eta_{\varepsilon}>0$ s.t. if
(*) $|f(x)-f(c)|<\varepsilon, \quad \forall x \in[c, c+\eta \varepsilon)$. (consider only right side)
Let $h \in\left(0, \eta_{\varepsilon}\right)$, then Additivity The 7.2.s) (Cor 7.2.10)
$\Rightarrow f \in R[a, c+h], R[a, c] \& R[c, c+h]$ and

$$
\int_{a}^{c+h} f=\int_{a}^{c} f+\int_{c}^{c+h} f
$$

ie. $\quad F(c+h)-F(c)=\int_{c}^{c+h} f$
$B y(*) \quad f(c)-\varepsilon<f(x)<f(c)+\varepsilon, \quad \forall x \in\left[c,\left(+\eta_{\varepsilon}\right)\right.$
we have $(f(c)-\varepsilon) h \leqslant \int_{c}^{c+h} f \leqslant(f(c)+\varepsilon) h$,
which unplies

$$
\begin{aligned}
& f(c)-\varepsilon \leqslant \frac{F(c+h)-F(c)}{h} \leqslant f(c)+\varepsilon \\
\Rightarrow \quad & \left|\frac{F(c+h)-F(c)}{h}-f(c)\right| \leqslant \varepsilon, \quad \forall h \in(0, \eta \varepsilon)
\end{aligned}
$$

It proves that $\lim _{h \rightarrow 0^{+}} \frac{F(c+h)-F(c)}{h}=f(c)$

The 7.3.6 If f is contūnoos on $[a, b]$, then

- $F(x)=S_{a}^{x} f$ is differentiable on $[a, b]$, and
- $F^{\prime}(x)=f(x), \forall x \in[a, b]$

Pf: $f \operatorname{cts}$ on $[a, b] \Rightarrow f \in R[a, b]$ \& ts at every pt. $c \in[a, b]$
$\operatorname{Eg} 7.3 .7$
(a) $\quad f(x)=\operatorname{sign} x$ on $[-1,1]$.

Then $: f \in Q[-1,1]$ (step function with a degenerated intual)

- f not contūaous at $x=0$, but carinas $\forall x \in[-1,1] \backslash, 10\}$.

Simply calculation: indefuite integral with basepoit -1 is

$$
F(x)=\int_{-1}^{x} \operatorname{sgn}(x) d x=|x|-1 \quad(E x!)
$$

One can see that $F^{\prime}(0)$ doesu't exist ("f cts at c "is a $\begin{gathered}\text { necessary condition }\end{gathered}$) and F is not an antidnirative of $f(x)=\operatorname{sgn}(x)$.
(b) Let $h=$ Thomae's function

$$
\begin{aligned}
& \text { Let } h=1 \text { homae's function } \\
& h(x)=\left\{\begin{array}{ll}
\frac{1}{n}, & \text { if } x=\frac{m}{n} \in[0,1] \text { \& } \\
1, & \text { if } x=n \text { have no common factus } \\
1, & (\tan =0
\end{array} \quad(\operatorname{gcd}(m, n)=1)\right. \\
& 0,
\end{aligned}
$$

Then by Eg 7.1.7, one concludes that

$$
\begin{aligned}
& H(x)=\int_{0}^{x} h \equiv 0, \forall x \in[0,1] \\
\Rightarrow \quad & H^{\prime}(x)=0 \text { exists } \forall x \in[0,1]
\end{aligned}
$$

However, $H^{\prime}(x) \neq G(x), \forall$ rational $x \in[0,1]$.

The 7.3.8 (Substitution Theorem)
let

$$
\begin{aligned}
& \int f: I \rightarrow \mathbb{R} \text { cts, }(I=\text { internal }) \\
& \text { - } \varphi=[\alpha, \beta] \rightarrow \mathbb{R} \text { set. } \varphi^{\prime}(t) \text { axiats \& cts } \forall t \in[\alpha, \beta] \text {, } \\
& \text { (ide. } \varphi \text { has a contūuros derivative) }
\end{aligned}
$$

Then $\int_{\alpha}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) d t=\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) d x$
Notes: (i) $t \& x$ in the facula are clumsy variables, just using theme for convenient s in practice:
thinking of change of variables $x=\varphi(t)$
In fact, the famula can be written as

$$
\int_{\alpha}^{\beta}(f \circ \varphi) \cdot \varphi^{\prime}=\int_{\varphi(\alpha)}^{\varphi(\beta)} f
$$

(ii) The famulla colds fur $\varphi(\beta) \leqslant \varphi(\alpha)$ as we defined befue.

Pf of Thm 738 : Ex 7.3 .17 (Easy application of Fundamental Thru $\&$ (hair rule)

Eg 73.9 Too easy, Omitted

Lebesgue's Integrability Criterion
Def 7.3 .10
(a) A set $Z \subset \mathbb{R}$ is said to be a null set (set of measure zero) if $\forall \varepsilon>0, \exists$ a countable collection $\left\{\left(a_{k}, b_{k}\right)\right\}_{k=1}^{\infty}$ of open ientevalss (could be oreelloped) such that

$$
Z \subseteq \bigcup_{k=1}^{\infty}\left(a_{k}, b_{k}\right) \text { and } \sum_{k=1}^{\infty}\left(b_{k}-a_{k}\right) \leqslant \varepsilon \text { length of internal }\left(a_{k}, b_{k}\right)
$$

(b) If $Q(x)$ is a statement about $x \in I$, we say that " $Q(x)$ holds almost everywhere on I" (n " $Q(x)$ holds far almost every (almost all) $x \in I^{\prime \prime}$) if \exists a null set $Z \subset I$ st.
$Q(x)$ holds $\forall x \in I \backslash Z$.
In this case, we write $Q(x)$ for a.e. $x \in I$.

Remarks: (i) "null set" may means "empty set" for save people. So "set of measure zero" is used more often.
(ii) Def (a) means 乙 can be cover by a set of arbitrary small total louth. (Kind of "lents of $Z=0$ ", but it is difficult to define "longth" of cubitrany sets in \mathbb{R}.)

Eg 7.3.1 $\mathbb{Q}_{1}=$ set of rational numbers in $[0,1]$ is a null set. (set of measure zero)
Pf: Q, is countable and can be written as

$$
Q_{1}=\left\{r_{1}, r_{2}, r_{3}, \cdots\right\}
$$

Given $\varepsilon>0$, define open intervals

$$
J_{k}=\left(\gamma_{k}-\frac{\varepsilon}{2^{k+1}}, r_{k}+\frac{\varepsilon}{2^{k+1}}\right), \quad k=1,2, \ldots
$$

Clearly $r_{k} \in J_{k}$ and llugth of $J_{k}=\frac{\varepsilon}{2^{k}}$.

$$
\therefore \quad R, \subset \bigcup_{k=1}^{\infty} J_{k} \text { and } \sum_{k=1}^{\infty} \text { length of } J_{k}=\sum_{k=1}^{\infty} \frac{\varepsilon}{2 k}=\varepsilon \text {. }
$$

Since $\varepsilon>0$ is arbitrary, \mathbb{Q}, is a null set.
From the proof, it is clear that it doesn't use the fact that r_{k} are rational. Hence, the proof can be used to prove that:

Every computable set is a null set (set of measure zero) ("countable infante" can be proved similarly, "countable finite" are included by dropping the tail of the unfouite series)

The 73.12 (Lebesgue's Integrability Criterion)
A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and cole if it is contuncons almost everywhere on $[a, b]$
(Pf: Omitted. See App.C of the Textbook)
Eg 7.3 .13
(a) Every step function on $[a, b]$ is bod \& has a flite set of points of discontinuity which is a set of weasine zero and heasce every step function on $[a, b]$ is Riemann integrable.
(b) Every monotone function on $[a, b]$ is Riemann integrable

In fact, monotme functions are bounded s
Thu 5.6.4 \Rightarrow set of points of descantimuity of a monotaicic function is countable.

Hence, it is a null set.
\therefore Lebesgue's Integrability criterion \Rightarrow it is Riemann integrable
(c) $(\operatorname{eg} 7.1,4(d))$

$$
G(x)= \begin{cases}\frac{1}{n}, & \text { if } x=\frac{1}{n} \quad(n=1,2, \cdots) \\ 0, \text { elsewhere on }[0,1]\end{cases}
$$

is bounded, and
Set of dis continuity $=\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$

is countable hence measure zero.
Lobesque's Integrability criterion $\Rightarrow G(x)$ is Riemann integrable
(d) $(\operatorname{Eg} 7.2 .2(b)$, not integrable)

Dirichlet function $f(x)= \begin{cases}1, & \text { if } x \text { rational }, x \in[0,1] \\ 0, & \text { if } x \text { irrational }, x \in[0,1] .\end{cases}$
is bounded.
set of discontinuity $=[0,1]$ (discontinums at every $x \in[0,1])$ which can be shown that it is not a null set (Omitted)
\therefore Lebesgue's Integrability criterion \Rightarrow
Dirichlet function is not Riemann integrable.
(e) $(\underline{\lg 7.1 .7})$ Thomal's function

$h(x)= \begin{cases}1, & \text { if } x=0 \\ 0,\end{cases}$
0 , if x is irrational $\& x \in[0,1]$.
is bounded \& (by eg 5.1.6(h))
Set of discontinuity $=\mathbb{Q}, \quad$ (set of rational numbers in $[0,1])$ which is of measure zero (es 7.3.11)
\therefore Lebesgue's Integrability criterion \Rightarrow
Thomae's function is Riemann integrable on $[0,1]$.

