$$Pf: (si number's Method)$$
Suice  $f(a) f(b) < 0$ ,  $f(a)$ ,  $f(b)$  have opposite signs (\* nonzero)  
 $f$  turice differentiable  $\Rightarrow$   $f$   $cis$  an  $[a_1b_3]$ .  
Intermediate Thin  $\Rightarrow$   $\exists$   $re(a_1b)$  such that  $f(r) = 0$ .  
Note that  $|f(x)| \ge M > 0$ ,  $\forall x \in [a_1b_3]$ , Rolle's Thun.  
 $\Rightarrow$   $r$  is the unique zero of  $f$  in  $[a_1b_3]$ .  
 $i.a.$   $f(x) \neq 0$ ,  $\forall x \in [a_1b_3] \setminus \{r'_3\}$ . (Ex!)  
Noide  $\forall x' \in I$ , Taylor's Thin  $\Rightarrow$   
 $0 = f(r) = f(x') + f'(x')(r-x') + \frac{f'(c')}{2}(r-x')^2$   
 $f(a some c' between  $r \neq x'$ .  
 $(since  $f$  is twice diff.)  
If  $x'' = x' - \frac{f(x')}{f'(x')}$ , use have  
 $x'' = x' + \frac{f'(x')(r-x') + \frac{f'(c')}{2}(r-x')^2}{f'(x')}$   
 $= r + \frac{1}{2} \frac{f'(c')}{f'(x')}(r-x')^2$   
 $\Rightarrow |x''-r| \le \frac{1}{2} \frac{|f'(c')|}{|f'(x')|}(x'-r)^2 = K(x'-r)^2$ . ( $t$ )$$ 

Choose 5>0 such that  $\delta < \frac{1}{K} \& [r-\delta, r+\delta] \subset [q, b],$ and let  $I^* = [r-\delta, r+\delta]$ Then, if Xn E It (clab]) for some n=1,2,3,..., we have from (\*),  $|X_{n+1}-r| \leq K |X_n-r|^2 \leq K\delta^2 < \delta$ . XntieI\*. ie. XnEI\* => Xntl EI\* Therefore, if XIEI\*, induction => the sequence (Xn) C IX. and satisfies the required inequality  $|X_{n+1}-r| \leq K |X_n-r|^2$ ,  $\forall n = (1,2,3,...$ Finally, to see "limit", we note 1st that  $|X_{n+1}-r| \leq K |X_{n}-r|^{2} \leq K \leq |X_{n}-r| ---- (K)_{2}$ Men iterate (x), :  $|\chi^{\nu+l}-L| \geq (K\mathfrak{Q})[\chi^{\nu}-L| \leq (k\mathfrak{Q})(K\mathfrak{Q}|\chi^{\nu-l}-L|)$ 

$$\leq (KQ)_{N} |X' - L| \leq \cdots$$

Since  $K \delta < 1$ ,  $(K \delta \delta)^n \rightarrow 0$  as  $n \rightarrow \infty$ , and  $|X_{1}-r|$  is a constant, we have  $|X_{n+1}-r| \rightarrow 0$  as  $n \rightarrow \infty$ i.e.  $\lim_{n \rightarrow \infty} X_{n} = r$ 

<u>eq 6.4.8</u> Using Newton's Method to approximate JZ. Som: Convert the problem to a problem of faiding root in order to use Newton's Method: Causider  $f(x) = x^2 - z$   $\forall x \in \mathbb{R}$ . Calculation = -f(x) = 2x (+0 near the root, as 0 is not a root) (f" exists and salisfies the cardition, but we don't need to find it explicitly in the approximation.) One read to guess an initial point X1. Since  $1^2 = 1$ ,  $2^2 = 4$ , (f(1) = -1, f(2) = 2)it seems reasonable to try XI=1.

Note that 
$$x_{ntl} = x_n - \frac{f(x_n)}{f(x_n)}$$
  
 $= x_n - \frac{x_n^2 - z}{zx_n}$   
 $= x_n - \frac{1}{z}x_n + \frac{1}{x_n}$   
 $= \frac{1}{z}(x_n + \frac{z}{x_n})$ .  
 $x_1 = 1 \implies x_2 = \frac{1}{z}(1 + \frac{2}{1}) = \frac{3}{z} = 1.5$ 

$$X_{3} = \frac{1}{2} \left( \frac{3}{2} + \frac{2}{3/2} \right) = \frac{17}{12} \simeq 1.416666$$
  
:  
(Check!)  $X_{5} \approx 1.414213562372$  (correct to 11 places)

(1) (\*) au le mutten as (K|Xn+1-r|) ≤ (K|Xn-r|)<sup>2</sup>
 Home if K|Xn-r| < 10<sup>-m</sup>,
 then K|Xn+1-r| < 10<sup>-2m</sup>
 . number of significant digits in K|Xn-r|
 thas been <u>doubled</u>.
 And home, the sequence (Xn) generated by Newston's method
 > said to "converge quadratically".

(b) Choose of initial X1 is <u>important</u> (i.e. has to be in I<sup>X</sup>), otherwise (Xn) may not converge to the zero (root). Possible situations



 $(\times_{h} \rightarrow \infty)$ 

X2 X<sub>(</sub>  $(seg is (X_1, X_2, X_1, X_2, X_1, X_2, \cdots))$ no luit