§ 6.3 <u>L'Hospital's Rule</u> Recall: If $\lim_{x \to c} f(x) = A$ $\lim_{x \to c} g(x) = B \neq 0$, Huen $\lim_{x \to c} \frac{f(x)}{g(x)} = A$.

Question: What can we say about case that B=0?

(1) If
$$A \neq 0$$
, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \infty$ $(\pm \text{ depends on Syn}(A))$
 $x = \sup_{x \to c} \frac{g(x)}{g(x)} = \infty$ $(\text{including jumping from } x = c)$
 $(\text{including jumping from } \pm co)$
 $i.e. not exact, \lim_{x \to c} |\frac{f(x)}{g(x)}| = co)$

(2) Indeterminate if
$$A=0$$
:
^{eg.} $f(x)=Lx^{2}$, $g(x)=x^{2}$: $\lim_{X \to 0} \frac{f(x)}{g(x)} = L$ (finite)
 $f(x)=x^{3}$, $g(x)=x^{2}$: $\lim_{X \to 0} \frac{f(x)}{g(x)} = 0$
 $f(x)=x^{2}$, $g(x)=x^{4}$: $\lim_{X \to 0} \frac{f(x)}{g(x)} = \infty$
Symbol for this indeterminate form : %
Other indeterminate fams:
 $\frac{\alpha}{\alpha}$, $0.\infty$, 0° , 1° , ∞° , $\omega = \infty$

eg: 0° denotes indeterminate form of
$$\lim_{x \to c} f(x)^{g(x)}$$

with $\lim_{x \to c} f(x) = 0 = \lim_{x \to c} g(x)$.
and $\infty - \infty$ denotes indeterminate form of $\lim_{x \to c} (f(x) - g(x))$
with $\lim_{x \to c} f(x) = +\infty = \lim_{x \to c} g(x)$.
 $(n - \infty)$
Note: Indeterminate forms 0.00 , 0° 1° ∞° $\approx \infty - \infty$

Thm 6.3.1 let
$$fg:(a,b] \to \mathbb{R}$$
 $(a < b)$
 $f(a) = g(a) = 0$
 $g(x) \neq 0 \quad \forall x \in (a,b)$
If f and g are differentiable at a $(1-side limit)$ with
 $g'(a) \neq 0$, then $\lim_{x \to a^+} \frac{f(x)}{g(x)}$ exists and
 $\lim_{x \to a^+} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$

Remarks:

(1)
$$f(a) = g(a) = 0$$
 is necessary !
(ounterexample: $f(x) = x + i7$, $g(x) = zx + 3$ on $[0, 1]$.
Then $f(o) = i7 \neq 0$, $g(o) = 3 \neq 0$. (Ite particular (addition not satisfied)
 $f'(o) = 1$, $g'(o) = 2 \neq 0$ (Other undistant satisfied)
And $\lim_{X \to 0} \frac{f(x)}{g(x)} = \frac{i7}{3} \neq \frac{1}{2} = \frac{f(o)}{g'(o)}$.

(2) No read to assume differentiability (a even continuity) in (0,5).

(5) The Thue tields for the other end point b with

$$\begin{aligned}
& \lim_{X \to b^{-}} \frac{f(x)}{g(x)} = \frac{f'(b)}{g'(b)} \quad \text{provided} \quad \begin{cases}
f'(b) & g'(b) & \text{shift} \\
f'(b) & g'(b) & \text{shift} \\
& f(b) & g'(b) & g'(c) & g'(c$$

Qg: Thur 6.3.1 can be applied as follow (interior point):

 \times

$$\lim_{X \to 0} \frac{X^2 + X}{Au Z X} = \frac{\frac{d}{dx} (X^2 + X)/_{X=0}}{\frac{d}{dx} Au Z X/_{X=0}} = \frac{1}{2},$$

For further results, we need

$$Thm 6.3.2 (Cauchy Mean Value Therem)$$
Let • $f,g: (a,b] \rightarrow \mathbb{R}$ cartinuous (a,b)
• f,g differentiable on (a,b)
• $g'(x) \neq 0$, $\forall x \in (a,b)$
Then $\exists c \in (a,b)$ s.t. $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$.

Remarks: (1) One may tempted to think of the following wrong proof:

$$MVT \Rightarrow \exists c \; s.t. \; f(b) - f(a) = f(c)(b-a)$$
and $g(b) - g(a) = g(c)(b-a)$

$$Hence \qquad \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f(c)}{g'(c)}$$
The mixtake is that the "c" given by the MVT depends
on the functions $f \in g$. Careful notations should be
$$\exists c_{f} \; s.t. \; f(b) - f(a) = f'(c_{f})(b-a) \quad a$$

$$\exists c_{g} \; s.t. \; g(b) - g(a) = g'(c_{g})(b-a).$$
But c_{f} may not equal c_{g} .

(3) Clearly, if gixs=x, Cauchy MVT reduces to MVT.

$$Pf(of(auclug MVT)).$$
Since $g'(x) \neq 0$, $\forall x \in (a,b)$, we have $g(b) \neq g(a)$.
Otherwise the function $g(x) - g(a)$ satisfies $i \frac{g(b) - g(a) = 0}{g(a) - g(a) = 0}$
and Rolle's Thus $\Rightarrow \exists c \in (a,b) \text{ s.t. } g'(c) = (g(x) - g(a))'/_{x=c} = 0$
Hence we can define

$$f_{n}(x) = \frac{f(b) - f(a)}{g(b) - g(a)} \left(g(x) - g(a) \right) - \left(f(x) - f(a) \right) \quad \forall x \in [a, b]$$

(learly, h is continuous on [a,b] \approx differentiable on (a,b) (by the assumption on f \approx g). Moreover, $f_{(b)} = \frac{f(b) - f(a)}{g(b) - g(a)} (g(b) - g(a)) - (f(b) - f(a)) = 0$ and

$$h(a) = \frac{f(b) - f(a)}{g(b) - g(a)} \left(g(a) - g(a) \right) - \left(f(a) - f(a) \right) = 0$$

.: Rolle's Thm => ECE(Q,b) st.

$$0 = f_{(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} g'(c) - f'(c)$$

Since
$$g(c) \neq 0$$
, we have $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f(c)}{g'(c)}$

Thm 6.3.3 (
$$L'$$
Hospital's Rule I)
Let $-\omega \le a < b \le \infty$
 $\cdot \quad f, g$ differentiable on (a, b) (ND assumption at end pts.)
 $\cdot \quad g'(x) \ne 0$, $\forall x \in (a, b)$
 $\cdot \quad g'(x) \ne 0$, $\forall x \in (a, b)$
 $\cdot \quad g'(x) = 0 = \lim_{X \to a^+} g(x)$
(a) If $\lim_{X \to a^+} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$, then $\lim_{X \to a^+} \frac{f(x)}{g(x)} = L$
(b) If $\lim_{X \to a^+} \frac{f'(x)}{g'(x)} = L \in \{-\infty, \infty\}$, then $\lim_{X \to a^+} \frac{f(x)}{g(x)} = L$
Bf: For any x, β such that $a < a < \beta < b$,
Rolle's implies $g(\beta) \ne g(a)$ since $g'(x) \ne 0$ $\forall x \in (a, b)$.
Further were, Cauchy Mean Value Then
 $\Rightarrow \exists u \in (a, \beta)$ such that

$$\frac{f(p) - f(\alpha)}{g(p) - g(\alpha)} = \frac{f(\alpha)}{g'(\alpha)} \qquad (*)$$

If
$$a < x < \beta < a + \delta$$
, then the u in (t) satisfies
 $a < u < a + \delta$.

$$|fence L - \varepsilon < \frac{f(u)}{g'(u)} < L + \varepsilon$$

tence
$$L - \varepsilon < \frac{f(u)}{g'(u)} < L + \varepsilon$$

$$\Rightarrow \quad L - \varepsilon < \frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)} < L + \varepsilon \qquad (by (*))$$
ething $d \Rightarrow at$ and using $\lim_{x \to a^{k}} f(x) = 0 = \lim_{x \to a^{k}} g(x)$

Letting
$$d \Rightarrow at$$
 and using $\lim_{X \Rightarrow at} f(x) = 0 = \lim_{X \Rightarrow at} g(x)$,
we have $\forall \beta$ with $a < \beta < a + \delta$,
 $f(\beta)$

$$L - \xi \leq \frac{\int (\beta)}{g(\beta)} \leq L + \xi$$

Now, Y 2'>0, we can choose E>0 s.t. E<E'.

Then
$$\left|\frac{f(\beta)}{g(\beta)} - L\right| \leq \epsilon < \epsilon', \forall \beta \in (a, a+\delta)$$

In other words, VE>0, JJ>0 S.t.

$$\frac{f(\beta)}{g(\beta)} - L | < \varepsilon', \forall \beta \in (a, a + \delta).$$

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = L ,$$

L

Call (b)
$$\lim_{x \to at} \frac{f(x)}{g'(x)} = L$$
, $L = \pm \infty$.
If $L = +\infty$, then $\forall M > 0$, $\exists \delta > 0$ such that
 $\frac{f(x)}{g'(x)} > M$, $\forall x \in (\alpha, \alpha + \delta)$.

Hence for $\alpha < \alpha < \mu < \beta < \alpha + \delta$, $M < \frac{f(\mu)}{g(\mu)} = \frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)}$. Letting $\alpha \Rightarrow \alpha^{+} \ll \mu \text{ and } g = \lim_{x \Rightarrow \alpha^{+}} g(x) = 0 = \lim_{x \Rightarrow \alpha^{+}} g(x)$, we have $M \leq \frac{f(\beta)}{g(\beta)}$, $\forall \alpha < \beta < \alpha + \delta$. Since M > 0 is arbitrary, we have $\lim_{x \Rightarrow \alpha^{+}} \frac{f(x)}{g(x)} = +\infty = L$. Similarly for $L = -\omega$ (check!)

(b)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{zx}$$
?
 $\sum_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{zx}$?
 $\sum_{x \to 0} \frac{1 - \cos x}{x^2}$

However, f(x) = sin x diff. & f'(x) = coo xg(x) = -2x diff. & $g'(x) = 2 \neq 0$ $\forall x \in \mathbb{R}$.

$$\lim_{X \to 0} \frac{A \dot{u} x}{Z x} = \lim_{X \to 0} \frac{\omega x}{2} = \frac{1}{2} \quad \text{has a limit.}$$

Home L'Hospital's Rule I again =)

$$\lim_{X \to 0+} \frac{1-Cox}{x^2} = \lim_{X \to 0+} \frac{sinx}{2x}$$

Since
$$(-(u, x) = xinx exists a (X^2) = 2x \neq 0 \forall x > 0$$

And
$$\lim_{X \to 0^-} \frac{1-(0)X}{X^2} = \lim_{X \to 0^-} \frac{1}{2X}$$

Since
$$\lim_{x \to 0} \frac{\lambda \dot{u} x}{zx} = \frac{1}{2}$$
 exist, the 2 1-sided limits equal

and hence

$$\lim_{X \to 0} \frac{1 - \cos X}{X^2} = \lim_{X \to 0} \frac{\sin X}{z_X} = \frac{1}{z}$$

(c)
$$\lim_{X \to 0} \frac{e^{X}}{x} = \lim_{X \to 0} \frac{e^{X}}{1} = 1$$
. (check conditions!)

As in (b), this existence of limit implies

$$\lim_{X \to 0} \left(\frac{e^{X} - |-X|}{X^2} \right) = \lim_{X \to 0} \frac{e^{X} - |-X|}{X} = 1 \quad (\text{chock conditions!})$$

(d)
$$\lim_{X \to 1} \frac{\ln X}{X-1}$$
 (defines for $X > 0$)

$$= \lim_{X \to 1} \frac{1/X}{1}$$
 ($(\ln X)' = \frac{1}{X}$ exists $\forall X > 0$)
 $(X-1)' = 1$ exists $\neq 0$, $\forall X > 0$)
 $= 1$ (limit exists, calculation justified)

$$Thm 6.3.5 (L'Hospital's Rule II)$$
Let $-\omega \le \alpha < b \le \infty$
 $\cdot 5, g$ differentiable on (a, b) (NO assumption at end pts.)
 $\cdot g'(x) = 0, \forall x \in (a, b)$
 $\cdot lin_{x \to a^{+}} g(x) = \pm \infty$
(a) If $lin_{x \to a^{+}} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$, then $lin_{x \to a^{+}} \frac{f(x)}{g(x)} = L$
(b) If $lin_{x \to a^{+}} \frac{f'(x)}{g'(x)} = L \in \{-\alpha, \infty\}$, then $lin_{x \to a^{+}} \frac{f(x)}{g(x)} = L$

$$Pf: Only fn "lin_{x \to a^{+}} g(x) = \pm \infty$$
"lin_{x \to a^{+}} g(x) = -\infty " is similar.

As before,
$$\forall \alpha, \beta \in (a, b)$$
 with $a < d < \beta < b$, we have
• $g(\beta) \neq g(\alpha)$ and
• $\frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)} = \frac{f'(\alpha)}{g'(\alpha)}$ for some $u \in (\alpha, \beta)$

 $\underline{Caee(A)}: L \in \mathbb{R}$. Subcase L>0 By $\lim_{X \to at} \frac{f'(x)}{g'(x)} = L$, $\forall \epsilon > 0$ ($\epsilon < \frac{1}{2}$), $\exists \delta > 0$ such that $0 < L - \varepsilon < \frac{f(u)}{q(u)} < L + \varepsilon, \quad \forall u \in (a, q + \delta) (* a + \delta < b)$ $\Rightarrow \quad L-\varepsilon < \frac{f'(\beta) - f(\alpha)}{q(\beta) - q(\alpha)} < L+\varepsilon, \quad \forall \quad q < d < \beta < q + \delta.$ As him g(x)=+00, I CE(a, a+5) such that Q(X) > O, $Y \times e(a, c) (c(a, q+b))$ Then for any a < d < c, we have $L-\varepsilon < \frac{f(c)-f(\alpha)}{g(c)-g(\alpha)} < L+\varepsilon$ (by taking $\beta = c$)

Using again, $\lim_{X \to a+} G(X) = t \infty$, we have $\lim_{X \to a+} \frac{g(c)}{g(x)} = 0$

Therefore, I OKC, <C such that $0 < \frac{g(c)}{q(\alpha)} < 1$, $\forall \alpha \in (\alpha, c_1) (c(\alpha, c))$ (Both g(x) & g(c) >0 from above) (Mistake in Touthrok) $\frac{y(\alpha) - y(c)}{q(\alpha)} = 1 - \frac{g(c)}{q(\alpha)} > 0, \quad \forall \; \alpha \in (\alpha, c_1)$ Therefore $L-\xi < \frac{f(c)-f(x)}{q(c)-g(x)} < L+\xi$ $\left(L-\varsigma\right)\left(I-\frac{g(c)}{q(\alpha)}\right) < \frac{f(c)-f(\alpha)}{q(c)-q(\alpha)} \cdot \left(I-\frac{g(c)}{q(\alpha)}\right) < \left(L+\varepsilon\right)\left(I-\frac{g(c)}{g(\alpha)}\right)$ $(L-\varepsilon)(I-\frac{g(c)}{g(\alpha)}) < \frac{f(\alpha)}{g(\alpha)} - \frac{f(c)}{g(\alpha)} < (L+\varepsilon)(I-\frac{g(c)}{g(\alpha)}).$ $\forall \alpha \in (\mathfrak{q}, C_1)$ which is

$$\left(L-\varepsilon\right)\left(1-\frac{g(c)}{g(\alpha)}\right)+\frac{f(c)}{g(\alpha)}<\frac{f(\alpha)}{g(\alpha)}<\left(L+\varepsilon\right)\left(1-\frac{g(c)}{g(\alpha)}\right)+\frac{f(c)}{g(\alpha)},\quad\forall\alpha\in(a,c)$$

Using $\lim_{X \to a^+} g(x) = +\infty$ again, $\exists C_2 \in (a, C_1)$ such that

$$0 < \frac{g(c)}{g(\alpha)} < \eta$$
 and $0 < \frac{|f(c)|}{g(\alpha)} < \eta$, $\forall \alpha \in (q, c_2)$

where $\eta = \min\{1, \varepsilon, \frac{\varepsilon}{L+1}\} > 0$.

Then
$$\frac{f(\alpha)}{g(\alpha)} < (L+\varepsilon) + \eta < L+\varepsilon\varepsilon$$

and
$$\frac{f(\alpha)}{g(\alpha)} > (L-\varepsilon)(1-\eta) - \eta \quad (since \ L+\varepsilon > L-\varepsilon > 0)$$
$$= (L-\varepsilon) - [(L-\varepsilon) + 1]\eta$$
$$\geqslant (L-\varepsilon) - (L+1-\varepsilon) \cdot \frac{\varepsilon}{L+1} \qquad (\eta < \frac{\varepsilon}{L+1})$$
$$= L-\varepsilon - \varepsilon + \frac{\varepsilon^{2}}{L+1}$$
$$> L-\varepsilon\varepsilon$$

We've proved that, $\forall z \in z > 0$ (equi. to $\forall z \geq z > 0$) ($z \in \langle L \rangle$ $\exists c_z \in (0, c_1)$ such that $\lfloor -z \in \langle \frac{f(\alpha)}{g(\alpha)} \langle L + z \in \rangle, \forall \alpha \in (0, c_2).$ (c_z can be unitten as $\alpha + \delta$) $\vdots, \quad \lim_{X \to at} \frac{f(X)}{g(X)} = L$.

The proof of the subcess that L=0 and L<0 are similar (with careful consideration of "sign" in the inequalities!)

(Pf of (b): next lecture)