\$6.2 The Mean Value Theorem

Recall: function f=I>R is said to have a · <u>relative</u> <u>maximum</u> at CEI (320) if $\exists a \text{ neighborhood of } (V = V_{\delta}(C) = (c \cdot \delta, c + \delta)$, such that $f(x) \leq f(c)$, $\forall x \in V \cap I$; $\begin{pmatrix} some point may control I \\ \downarrow & \downarrow & \downarrow I \end{pmatrix}$ relative minimum at CEI if $\exists a \text{ neighborhood of } (V = V_{\delta}(C) = (c \cdot \delta, c + \delta)$, such that f(x)>f(c), UXEVNI; relative extremment at CEI if either "relative maximum" n "relative minimum" Thm 6.2.1 (Interior Extremum Theorem) (Same notations as above)

If
$$f'(c)$$
 exists, then $f'(c) = 0$.

Note: The condition that CEI is an interior point is neccessary:

eq:
$$f(x)=x$$
 on $TO, 1$ has relative extremum
at $x=0$ (min), but $f'(0)=1=0$,
 $(at x=1 (max), but f'(1)=1=0$.)

Let
$$c \in interia of I$$
, f has a relative maximum at c and $f(c)$ exists.

Suppose on the contrary that
$$f'(c) \neq 0$$
, then either $f'(c) > 0$ or $f'(c) < 0$.

If f'(c) > 0, i.e. $\lim_{\substack{X \to C \\ (X \neq c)}} \frac{f(x) - f(c)}{x - c} > 0$. Then (by Thm 4.2.9 of the Textbook, MATH2050), $\exists a nbd$. $V = V_{\delta}(c)$ such that $\frac{f(x) - f(c)}{x - c} > 0 \quad \forall x \in V \cap I$, $x \neq c$. Since $(\in interior of I)$, one can find a δ_i , $o \cdot \delta_i \cdot \delta'$ (if needed) so that $(c \cdot \delta_i, c + \delta_i) \in V \cap I$.

Note that f has a relative nurinum, there exists $\delta_{\epsilon} > 0$ such that $f(x) \leq f(c)$, $\forall x \in (c-\delta_{\epsilon}, c+\delta_{\epsilon}) \land I$

Then for
$$\overline{\delta_3} = \min\{\overline{\delta_1}, \overline{\delta_2}\} > 0$$
,
 $(C-\overline{\delta_2}, C+\overline{\delta_3}) \subset \forall N I \text{ and}$
 $(C-\overline{\delta_2}, C+\overline{\delta_3}) \subset ((-\overline{\delta_2}, C+\overline{\delta_2}) \cap I$

As a result, $\frac{f(x) - f(c)}{x - c} > 0, \qquad \forall x \in (c - \delta_3, c + \delta_3), x \neq c.$ and $f(x) \leq f(c)$

Since $(c, c+\delta_3) < (c-\delta_3, c+\delta_3) < VAT$ The 1st inequality implies $\exists x > c$, in $(c-\delta_3, (+\delta_3) > s.t$.

$$\frac{f(x) - f(c)}{x - c} > 0 \implies f(x) - f(c) > 0,$$

which cartradicts the 2nd inequality.

Similarly, if f(c)<0, one can find s'>0 so that

$$\frac{f(x)-f(c)}{x-c} < 0, \qquad \forall x \in (c-\delta_3', c+\delta_3'), x \neq c.$$

and $f(x) \leq f(c)$

The 1st inequality $\Rightarrow \exists x < c \quad \text{such that} \quad \frac{f(x) - f(c)}{x - c} < 0.$ $\Rightarrow \quad f(x) - f(c) > 0 \quad \text{cantraclic} f_s \quad \text{the z^{nd} inequality}.$ All together, we have $f(c) = 0. \quad \times$

Cor6.2.2 Let
$$\cdot$$
 $f: I \Rightarrow IR$ catinuous
 \cdot f has a relative extremum at an interior point $c \in I$.
Then either $\int f(c) doesn't exist$
 $\sim \int f(c) = 0$.

(Pf= Follow easily from Thm 6.2.1)

US:
$$f(x) = |x|$$
 on $I = [-1, 1]$.
interior minimum at $x=0$.
 $f(x) = |x|$
 $f(x) = |x|$

This 6.2.3 (Rolle's Theorem)
Suppose •
$$f : [a,b] \rightarrow \mathbb{R}$$
 continuous (on closed interval $I = [a,b]$)
• $f'(x)$ exists $\forall x \in (a,b)$ (open interval, interim of I)
• $f(a) = f(b) = 0$
Then $\exists c \in (a,b)$ such that $f'(c) = 0$

Note that f is untimous on the closed interval [a,b], f attains an absolute maximum and an absolute minimum on I. (Thr. 5.3.4 of the Textbook, MATH 2050)

Hence, if
$$f > 0$$
 for some point in (a,b) , f attains
the absolute maximum, i.e. the value $sup ff(s) = x \in I \le 0$,
at some point $C \in (a,b)$ as $f(a) = f(b) = 0$.
Since $C \in (a,b)$, $f'(c)$ exists.
By Interior Extreme Thenen (Thm 6.2.1), $f'(c) = 0$.
If there is no $x \in (a,b)$ s.t. $f > 0$, then we must have
 $f < 0$ for some $x \in (a,b)$. Hence $(-f) > 0$ for some $x \in (a,b)$
and $-f$ satisfies all conditions as f . Therefore,
 $f : C \in (a,b)$ such that $(-f)'(c) = 0 \Rightarrow f'(c) = 0$.

$$\frac{Thm 6.2.4}{Suppose} \cdot f:[a,b] \rightarrow \mathbb{R} \text{ continuous} \quad (a < b)$$

$$\cdot f'(x) \text{ exists } \forall x \in (a,b)$$

$$\text{Then } \exists a \text{ point } c \in (a,b) \text{ such that}$$

$$f(b) - f(a) = f(c)(b-a)$$

Pf: Consider the function defined on [a,b]: $P(x) = f(x) - \left[\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right]$ $= f(x) - f(a) - \frac{f(b)-f(a)}{b-a}(x-a)$

Then φ is continuous on [a,b] as f is containon on [a,b], and $\varphi'(x)$ exists $\forall x \in (a,b)$ as f'(x) exists $\forall x \in (a,b)$.

At the end points

$$f(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a} (a - a) = 0$$

$$g(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a} (b - a) = 0$$

$$\therefore \quad 9 \text{ satisfies all carditions in Rolle's Thm (Thm 6.2.3).}$$
Hence $\exists c \in (a, b)$ such that

$$0 = q'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} \quad (by Thm 6.1.3 \text{ and } (x)' = 1)$$

$$\therefore \quad f(b) - f(a) = f'(c) (b - a). \quad (x)$$

Applications of Mean Value Thenem

Γ

$$\frac{\text{Thm } 6.2.5}{\text{Supple}} \quad \begin{array}{l} \mathcal{F}:[a,b] \rightarrow |\mathbb{R} \quad (\text{ontinuous} \quad (a < b)) \\ \bullet \quad \mathcal{F}(x) \quad \text{exiets} \quad \forall \ x \in (a,b) \quad (ie, \ f \ differentiable \ m \ (a,b)) \\ \bullet \quad \mathcal{F}(x) = 0 \quad , \ \forall \ x \in (a,b) \ . \end{array}$$

$$\text{Then} \quad \begin{array}{l} \mathcal{F} \quad io \ a \ canstant \ an \ Ta,b] \quad . \end{array}$$

$$Pf:$$
 let $x \in Iq, bJ$ and $x > a$.
Applying Mean Value Three to $f: Iq, x J \rightarrow IR$,
(which clearly satisfies all conditions of the Three)

we find a point
$$C \in (a, X)$$
 such that
 $S(X) - S(a) = S(c) (X - a) = o$ (by assumption $f(cs = o)$
 $\Rightarrow \quad S(X) = f(a), \forall X \in I.$
 $\therefore \quad f \in constant \ on \ I.$

Cor6.2.6 Suppose
$$f,g:[a,b] \rightarrow \mathbb{R}$$
 continuous
 f,g differentiable on (a,b)
 $f'(x) = g'(x), \forall x \in (a,b)$.
Then \exists constant C such that $f = g + C$ on $(a,b]$.

Recall f: I > R is said to be

- <u>Uncreasing</u> on I if $x_1 < x_2$ $(x_1, x_2 \in I) \Rightarrow f(x_1) \leq f(x_2)$ ____note:"not <" · decreasing on I if - f is increasing on I.

Thu 6.2.7 Let
$$f: I \rightarrow \mathbb{R}$$
 be differentiable. Then
(a) f is increasing on $I \iff f(x) \ge 0, \forall x \in I$
(b) f is decreasing on $I \iff f(x) \le 0, \forall x \in I$

Pf: (a) (≤) let
$$f(x) \ge 0$$
, $\forall x \in I$.
Then finary $x_1, x_2 \in I$ with $x_1 < x_2$, we can apply
the Mean Value Thm to $f: [x_1, x_2] \Rightarrow \mathbb{R}$
(since f is differentiable on $I \Rightarrow f: [x_1, x_2] \Rightarrow \mathbb{R}$ satisfies all conditions)
of the MVT
and find a point $c \in (x_1, x_2)$ such that
 $f(x_2) - f(x_1) = f(c)(x_2 - x_1)$
 ≥ 0 since $f(c) \ge 0 \notin X_2 > X_1$.
 $\therefore f$ is increasing on I .
(a) (⇒) Suppose f is differentiable and increasing on I .
Then $\forall c \in I$, we have
 $\frac{f(x_2) - f(c)}{x - c} \ge 0$, $\forall x \in I$, $x \neq c$
by "f is increasing" (both "positive (agers)" if $x < c$)
Hence f differentiable at $c =$)
 $f'(c) = \lim_{X \to c} \frac{f(x) - f(c)}{x - c} \ge 0$

(b) Applying (a) to -f. ×

Remarks: (1) strictly increasing:
$$X_1 < K_2 \Rightarrow f(x_1) < f(x_2)$$

Then ax. 13 of § 6.2 \Rightarrow "f(x)>0 on $I \Rightarrow$ § is strictly increasing on I ".
But: "f(x)>0 on $I \not\in$ § is strictly increasing on I ".
Counterexample: $f(x) = x^3 : \mathbb{R} \to \mathbb{R}$ is strictly increasing,
but $f(0) = 0$ which \hat{g} not">0".
(2) Consider $g(x) = \begin{cases} x + 2x^2 ain (\frac{1}{x}) & y x \neq 0 \\ 0 & y x = 0 \end{cases}$.
Exercise 10 of § 6.2: $g(0) = 1 > 0$, but $g(x)$ is not increasing
in any neighborhood of 0.
(That is, $g(x) > 0$ only at a point. We used a whole interval!)

$$\frac{\text{Thm } 6.2.8}{\text{Let}} = \frac{\text{First Derivative Test for Extrema}}{(a \le b)}$$

$$e \le (a,b)$$

$$f = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \text{ for addition (a,c) and (c,b)}.$$

$$Pf: (a) \quad \text{If } x \in (c-\delta, c), \text{ then Mean Value Thm} \\ \left(applying \quad \text{to } f = [x, c] > R \right) \text{ implies } \exists c_x \in (x, c) \quad s.t. \\ f(c) - f(x) = f'(c_x)(c-x) \\ \geq 0 \quad \left(since \quad f' \ge 0 \quad on \quad (c-\delta, c) \right) \end{aligned}$$

Further Applications of the Mean Value Theorem Examples 6.2.9

(a) Rolle's Thm 6.2.3 can be used to "locate" roots of a function. In fact, Rolle's Thm => 9=f' always has a voot between any two zeros of f (provided f is differentiable & etc.) explicit eq: $g(x) = (ax) = (xinx)^{\prime}$ sin x = 0 for x = nit for $n \in \mathbb{Z}$. Rolle's => cox has a root in (nti, (n+1) Ti), HNEZ. (eg. of Bessel functions In is omitted) (b) Using Mean Value Therrow for approximate calculations & error estimates, eg. Approximate J105. Applying Mean Value Thm to f(x)=JX on [100,105], f(105) - f(100) = f(c)(105 - 100) for some $c \in (100, 105)$. In eg 6.1.10 (d), we've seen that $f(c) = \frac{1}{2\sqrt{c}}$ $\int \sqrt{105} - \sqrt{100} = \frac{5}{2\sqrt{100}}$ for fome $C \in (100, 105)$

$$\Rightarrow 10 + \frac{5}{2 \log 5} < \sqrt{105} < 10 + \frac{5}{2 \sqrt{105}} = 10 + \frac{5}{2 \sqrt{10}} = 10.25$$
And $\sqrt{105} < \sqrt{121} = 11 \Rightarrow \sqrt{105} > 10 + \frac{5}{2 \sqrt{11}}$
Hence $\frac{205}{22} < \sqrt{105} < \frac{41}{4}$
(Of cause, the estimate can be improved by more careful analysis)

Examples 6.2.0 (Inequalities)

(a) $e^{x} \ge 1+x$, $\forall x \in \mathbb{R}$ and "equality $\iff x=0$ ".

Ef: We will use the fact that

 $f(x) = e^{x}$ thas dominative $f'(x) = e^{x}$, $\forall x \in \mathbb{R}$

(and $f(x)=1$)

and $e^{x} > 1$ for $x > 0$

 $e^{x} < 1$ for $x < 0$.

(To be defined and proved in §8.3.)

If $x=0$, then $e^{x} = 1 = 1+x$. We're done.

If $x > 0$, applying MVT (Mean Value Thm) to

 $f(x) = e^{x}$ on $To, x = 1$,

)

we have
$$c \in (0, x)$$
 such that
 $e^{x} - e^{0} = e^{c}(x - 0)$
 $\therefore e^{x} - 1 > x$.
If $x < 0$, applying MVT to $f(x) = e^{x}$ on $[x, 0]$,
we have $c \in (x, 0)$ such that
 $e^{0} - e^{x} = e^{c}(0 - x)$
 $1 - e^{x} < -x$ $(e^{c} < 1, -x > 0)$
 $\therefore e^{x} > 1 + x, \forall x < 0$.

Finally, one observes, in both cases, the inequality is strict. So "equality $\Leftrightarrow x=0^{\prime\prime}$.

(b)
$$-x \leq ainx \leq x$$
, $\forall x \geq 0$.

Pf: The inequalities are clear for X = 0. Let X > 0. Consider g(x) = sin x on [0, x]. Then MVT implies $\exists c \in (0, x) s.t.$ sin x - sin 0 = (cos c)(x - 0)

Using $-1 \le \cos(\le 1)$ and $\sin 0 = 0$, we have $-x \le \sin x \le x$ (as k > 0)