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1. (25 points)

Let C[a, b] be the set of continuous real-valued functions on the closed and bounded in-
terval [a, b]. Let F C C|a, b] be a non-empty subset that satisfies the following condition:
for any u,v € F,u Av € F, where u A v(z) := min{u(x),v(z)} for any = € [a, b].

(i) Let g € Cla,b], suppose that g(z) = inf{h(z) : h € F,g < h} for any = € [a, ],
prove that for any ¢ > 0, there exists some f € F such that |f(z) — g(x)| < € for
all z € [a, b].

(i1) Does the result of Part (i) holds if g is only assumed to be bounded, instead of
continuous?

(iii) Does the result of Part (i) holds if the domain [a, b] is replaced by the unbounded
closed interval [a, 00)?

Solutions.

(i) For each y € [a,b], by assumption, given any ¢ > 0, there exists some h, € F
with ¢ < h so that g(y) — e < g(y) < hy(y) < g(y) + €. Here the subscript is
to signify that that the dependence of & on y. Since both h, and g are continuous
function, the strict inequality signs are preserved in a small neighborhood of y. More
specifically, if we consider the continuous function h,(z) = g(x) + € — hy(z),

since € := h,(y) > 0, by continuity there is some g, > 0 so that for any = €
(y—9,,y+9,)N]a,b], \hy () — hy(y)| < e. Hence we have h,(z) > h,(y) —e = 0.
Likewise, g(x) — € — hy () is negative at x = y, so there is some small J; > 0 so
that on (y — d;,y + 0,/) N [a, b], we have g(z) — e — h,(x) < 0.
Now we take , = min{J;,d; }, then over I, := (y — d0,,y + J,), we have g — € <
hy < g + €. The collection of open intervals {I,},cq forms an open cover of
la,b], so by compactness there is a finite subcover {I,,}” ;. Now we claim that
f:=min{h,, : i =1,...,n} is the desired function.
Firstly, f € F because each of h,, € F, and F is closed under taking minimum
of functions. Next, suppose that z € [a,b], then x € [, for some i, therefore
f(z) < hy(z) < g(x) + €. And also the minimum f(z) = h,, () for some j, so we
have g(z) — € < g(x) < hy,(z) = f(z). Since x is arbitrary, we have shown that
glx) —e < f(x) <g(z) +eie |f(z) —gla)| <e

(ii) No, a counter-example is given by F = {h,(z) := 2"|n € N} C C[0,1]. The
function g(z) = 0 for z € [0,1) and g(1) = 1, is a bounded discontinuous function
that can be realized as the infimum of F. To see this, note that lim,,_,,, ™ = 0 for
1>z >0andequals 1if x = 1.



Then for e = %, for any h, € F,if wetakey > { %, then we have y"” > % In other

words, |h,,(y) — g(y)| > 3. So the result of Part (i) does not hold for this example.
(iii) No, a counter-example is given by F = {p,(z) := Z|n € N} C C[0,00). The

constant function g(z) = 0 is continuous and can be realized as the infimum of F,

since lim,, o, 7 = 0.

For € = 1, and for any p, € F, if we take y > n, then p,(y) = £ > 1, so that

|pn(y) — g(y)| > 1. The result of Part (i) does not hold for this example.

. (25 points)
Forxz = (21, ..., xm) and y = (Y1, ..., Ym) iInR™, let||z|| := /2 + ... + 22, and (z,y) :=

> e, Tryk. Let A be an m x m matrix and let B := {x € R™ : ||z|| < 1}. Define
q: B — Rby
q(z) := (Ax,z), = € B.

(i) Show that {||Az|| : z € R™,||z|| = 1} is bounded.

(i) Show that the function ¢ is Lipschitz on B, i.e., there is some C' > 0 such that
lg(z) —q(y)| < Cllz — y[| forany z,y € B.

(111) Show that

sup{% cx,y € Bx # y} = 2sup{[(Az,z)| : x € R™, [[z[| = 1}.

Solutions.

(i) Denote A = (a;;), where a;; is the entry at the i-th row and j-th column. Then y =
(y1, .., Yym) = Az is a vector whose i-th component is given by y; = Z] | i Tj.
Write M = max{a;; : 1 <i,j < m}, then for v € R™ with ||z|| = 1, we have

[ Az]]® =yl = (Z aijﬂfj) <> < |ai| - I%I>
=1 =

R )

=1

m

= mM? Z |z, = mM?
j=1
That is, || Ax|| < My/mon ||z|| = 1. So it is bounded.
(ii) Note that the above argument implies that || Ax|| < M+/m||z||. So we have

la(2) = q(y)| = [(Az, 2) — (Az,y) + (Az,y) — (Ay,y)]
< [{Az, z —y)| + [(Alz = y), y)|
< [[Az][ - [l =yl + [[A(z = y)I| - lly]l
< My/mllz]| - [le = yll + Mv/m||z — y| - [[y]]
< 2My/ml|z —yl.



(iii)

The first inequality sign is due to triangle inequality and linearity of inner product.
The second inequality sign is the Cauchy-Schwarz inequality. The third inequality
is the estimate we obtained from Part (i). The last inequality is from the domain B,
where ||z|| < 1.

We will first prove the result for A = AT a symmetric matrix. In that case, we will
need the following lemma.

Lemma. Let A be a symmetric matrix, then || A|| := sup{||Az|| : z € R™; ||z|| =
1} = sup{|[(Az,z)| : = € R™; ||z|| = 1}. The number || A|| is usually called the
operator norm of A.

Proof. The (>) is always true from the Cauchy-Schwarz inequality, regardless of
whether A is symmetric, as

[(Az, z)| < [[Az|| - ||2|| = [|Az]].

So the LHS is an upper bound of the values |(Az, z)|.

For the (<) direction. We note that a symmetric matrix over R is orthogonally
diagonalizable, i.e. there exists some orthogonal matrix () such that Q7 AQ = D
is a digaonal matrix. Notice that an orthogonal matrix preserves the standard inner
product, i.e. (Qz,Qy) = (x,QTQy) = (x,y). Therefore Q : 9B — 9B is well-
defined and is a bijection, i.e. () preserves the length one vectors. Now consider

qp(w) == (D, z) = (Q" AQz, v) = (AQ, Q) = qa(Qx).

Since () is a bijection on {z : ||z|| = 1}, in particular sup{|(Dx, x)| : ||z|| = 1} =
sup{[(Ay, y)| : [lyl| = 1}: and likewise sup{||Dz[| : ||z[| = 1} = sup{||Ay]| :
lly|| = 1} by considering y = Qx. Therefore it suffices to prove (<) for the diagonal
matrix D. Let )\; be the eigenvalue with respect to the ¢-th vector in the eigenbasis,
suppose |\g| = p(A) = max{|\;| : i =1,...,m}. Then, over ||z|| = 1, we have

|| Da|| = Z/\22§ Azzﬁ | Al = [{Dex, ex)l,

where ey, is the k-th standard basis vector. This proves the (<) direction for D,
hence for A. Also note that this argument implies that both of these supremums are
in fact equal to |\g|. [

By the above lemma, it suffices to prove the following equality in the case when A
1S symmetric:

s.up{M s x,y € B, x%y} = 2||4]|.
Iz =yl

Proof. The (<) direction is obtained by the calculation in Part (ii), where we have
la(x) = q(y)] < [[Az]] - [lz = yl| + [[Alz = y)l| - Iyl
r—y
< 1Al llo = oll+ 114 (=2 -l =
||z = yll
< 2[[A[[ - [lz =yl



For the (>) direction, we take z = z;, an unit length eigenvector for the eigenvalue
Ak, and consider y = tz;, depending on a parameter ¢ € (0,1). Then since ¢ is
quadratic,

lg(zx) —gq(tzy)| (1 —t*)|g(ap)| _ — as _
0ol — Gl T = 200 =2flA][ast = 17

So the supremum of the values of % must be at least 2|| Al|. |

This proves the equality of supremums in the case when A is symmetric. The general
case follows almost immediately by noting that g4 47 (z) = (A + ATz, z) =
2(Az,z) = 2qa(z). So we may apply the result for the symmetric case to the
symmetric matrix A + AT i.e. we have

28up{|qA(x) —qa(y)] rye Bia 4 y} ~ sup { g ar(7) — qayar (y)| ey e Bia 4 y}

|z —yl|
= 2sup{[((A + A")z, )| : [|z]| =1}
= 4sup{|(Az,z)| - [[«]| = 1}.

||z —yl|

Remark: This question is more linear algebra than analysis. Alternatively, you can
prove the (<) direction by a higher dimensional version of the mean value theorem
(although we haven’t prove this rigorously yet, see MATH2060). The idea is that B
is a convex domain, so for any two points z,y € B where x # y. We may connect
them via the straight line r(t) = tx + (1 — t)y for t € [0, 1], which lie completely
inside B. Then apply the mean value theorem on f(t) = ¢(r(t)), which says that
q(x)—q(y) = f(1)—f(0) = f'(te)(1—0) = Vq(r(ty))(r'(to)) for some ty € (0, 1).
We have r/(t) = z—y independent of ¢, and Vg(z) = ((A+ AT)z, —). So the above
gives

la(z) — a(y)l = [{(A+ AT)(r(t0), = — )| < |4+ A"|| - ]z — y]]
= 2[[All - [l = yl].

More generally, this argument can be generalized to the case for f : K — R is
any differentiable function over a convex compact domain X' C R™, such that
{|IVf(x)|| : * € K} is bounded, then f is Lipschitz with the minimal Lipschitz
constant equals to the supremum of ||V f(z)||. The linear algebra we did for ¢(z) is
essentially trying to figure out what is this supremum of gradient.



