

Q: Classification in general seems out of reach. so what about just for some "simpler" Functions?

A: Yes, e.g. for monotone functions.

Def": Let f: A → R. We say that

(i) f is (strictly) increasing if the following holds:
 (<)
 (
 (<)
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (</

(iii) f is (strictly) monotone if it is either (strictly) increasing / decreasing.

GOAL: Monotone functions on [a.b] ONLY have "jump discontinuities".

We shall need the notion of "1-sided limits".

Def¹: Let f: A → iR and CEIR is a cluster point of An(C, ∞). lim f(x) = L iff ∀ E>O, ∃ S = S(E) > 0 st. | f(x) - L | < E whenever x ∈ A and "right-hand limit" 0 < x - C < S Remark: We can define similarly $\lim_{x \to C^+} f(x) = L$.

we have X < < < < , and hence (: f increasing) $\sup f(x) - \varepsilon < f(x_{\varepsilon}) \leq f(x) \leq \sup f(x)$ X6 [a,c) x € [A, c) Cor: Same assumption as in Thm. THEN: f cts at $c \in (a, b)$ $\langle = \rangle$ sup f(x) = f(c) = inf f(x)X { (c,b] XE [a.c) Def": Let f: [a,b] → iR be an increasing function & C ∈ (a,b). Define the jump of f at c to be $\dot{J}_{f}(c) := \lim_{x \to c} f(x) - \lim_{x \to c} f(x)$ Note: f(c) > 0 and "=" holds <=> f is cts at c THEN, the set of CE[a.b] sit f is discontinuous at C is at most countable. i.e. 3 only at max wuntably many jump dis constinution for a monstone fin.

troof: Denote the set of discountinuity Note: $\mathcal{D} \coloneqq \{ c \in (a,b) \mid j_f(c) > 0 \}$ $\overline{J_{f}(c)} \leq f(b) - f(a)$ Consider the subsets $D_{1} := \left\{ C \in (a,b) \mid \hat{\partial}_{f}(c) \geq f(b) - f(a) \right\} \quad \# D_{1} \leq 1$ $D_2 := \left\{ C \in (a,b) \mid \hat{\partial}_f(c) \ge \frac{f(b) - f(a)}{2} \right\}, \# D_2 \le 2$ $D_{k} = \left\{ C \in (a,b) \mid \hat{\partial}_{f}(c) \geq f(b) - f(a) \right\} + D_{k} \leq k$ Then, $D = \bigcup_{k=1}^{\infty} D_k$ hence is at most countable. Existence of inverse

"Statch of Roof": By EVT and IVT, and f statisty increasing

$$f: [a,b] \rightarrow [m, M]$$
 is 1-1 and onto, so f exists.
Claim: $f': [m, M] \rightarrow [a,b]$ is stretty increasing.
M
 $y = f(x)$
 $y = f(y)$
 $y = f(y)$
 $y = f(x)$
 $y = f(x) = y_1, f(x_3) = y_2.$
Note: $x_1 \neq x_2.$
Suppose $f(x_1) = y_1, f(x_3) = y_2.$
Note: $x_1 \neq x_2.$
Suppose $f(x_1) = y_2, f(x_3) = y_3.$
 $y_1 = f(x_1) > f(x_3) = y_3.$
Claim: $f': [m, M] \rightarrow [a, b]$ is cts
 $Pf of$ Claim: Suffice to check $\forall y_1 \in (m, M),$
 $y_1 = f(y) = y_2 + f(y)$
 $y = y_3 + f(y) = y_3 + f(y)$
Suppose Not, then $\exists y_1 \in (m, M)$ st $j_{g'}(y_1) > 0.$
 $ie a \leq lim f'(y) < g < lim f'(y_1) = (x_1)$
Let $f'(\tilde{y}) = \tilde{g}$. Note that $\tilde{y} \neq y_3 + y_3$ (x).

Ø