Last time Sequentical Criteria, Divergence criteria, & limit theorems ASSUME: Functions are defined on A S iR, CEIR is a cluster pt of A. Squeeze / Sandwich Thm (for functions) Let g,f,h: A -> iR be functions sit. $g(x) \leq f(x) \leq h(x) \quad \forall x \in A \quad \dots \quad (t)$ Suppose $\lim_{x \to c} g(x) = L = \lim_{x \to c} h(x)$. THEN. $\lim_{x \to c} f(x) = L$. Remarks: 1) The existence of kinf(x) is a conclusion 2) One only requires (t) to hold in some neighborhood of C. Proof. Use sequential criteria. Let (Xn) be a sequence in A st Xn = c Vn EN. lim (Xn) = c. (lavin: lim f(xn) = LPf: By (+), g(xn) & f(xn) & h(xn) Vn e N By Seq. Conterna, lim g(Xn) = L = lim h(Xn). By Squeeze This for seq., lim fixe) = L.

Example 1:
$$\lim_{x \to 0} x^{3/2} = 0$$

Proof: Here: $f: A := \{x \in R \mid x \ge 0\} \rightarrow R$ where $f(x) := x^{3/2}$.
 $\int \frac{1}{2} = f(x) = x^{3/2}$ Take $g, h: A \rightarrow R$ ds
 $g(x) = x^{3}$ A $h(x) = z$.
 $g(x) = x^{3}$ A $h(x) = z$.
Note that
 $x^{3} \in x^{3/2} \in x$ $\forall x \in [0, 1]$
By square then, since
 $\lim_{x \to 0} x^{3/2} = 0 = \lim_{x \to 0} x$
So $\lim_{x \to 0} x^{3/2} = 0$.
Example 2: $\lim_{x \to 0} x \sin \frac{1}{z} = 0$
 $\left(\operatorname{Recall}: \lim_{x \to 0} (\sin \frac{1}{x}) \quad Do Es \text{ Not Exist by seq. Criteria.} \right)$
Proof: Here: $f: A = \operatorname{Ri}[b] \rightarrow \mathbb{R}$, and $f(x) = x \sin \frac{1}{x}$.
 $\lim_{x \to 0} \lim_{x \to 0} |x| = \lim_{x \to 0} x + i = 1$.
Now $\lim_{x \to 0} |x| = 1 \text{ for } \frac{1}{x} = 0$.
Now $\lim_{x \to 0} |x| = 0 = \lim_{x \to 0} -|x|$
 $\lim_{x \to 0} \lim_{x \to 0} |x| = -|x|$ By Square then.
 $\lim_{x \to 0} x + i = 0$.

Remark: The Prop. DOES NOT hold if we replace > by ≥. e.g. L=0 (see Example 2 above)

Proof: Use $\xi \cdot \xi def^2$! Take $\xi := \frac{L}{2} > 0$. Then $\exists \xi = \xi(\frac{L}{2}) > 0$ sit. $(f(x) - L) < \xi = \frac{L}{2} \quad \forall \ 0 < |x - c| < \xi$ $\Rightarrow \quad f(x) \geqslant L - \frac{L}{2} = \frac{L}{2} > 0 \quad \forall \ 0 < |x - c| < \xi$

§ Continuity of functions (Ch.5)

Q: What does "Continuity" mean? $<math display="block">f: A \rightarrow R \qquad A: "f is continuous at C"$ $<math display="block"><\Rightarrow "f(x) \approx f(c) \ \text{Men} \ x \approx C"$ $\begin{cases} y=f(x) \\ \xi \\ x \end{cases} \qquad Note: We \ NEED \ c \in A.$

Def ² : (E-8 def ¹ for continuity)
Given f: A → iR and CEA. we say that f is continuous
at C" if ∀ E>0, 3 8=8(2)>0 st.
(*) f(x) - f(c) < 2 whenever x E A, x - c < 8
Remark: Compared to the def of $\lim_{x \to c} f(x) = L$, we have
• L is replaced by f(c) => CEA
• $f(C)$ matters here, unlike $\lim_{x \to C} f(x) = L$
• (*) is always ratisfied at X=C
• C may or may not be a cluster point of A
For the last remark,
Case 1": When C IS a cluster pt. of A
"f is cts at $c \in A$ " <=> " $\lim_{x \to c} f(x) = f(c)$ "
interesting Cie You can "substitute" to
evaluate the limit at C.
Case 2: when C is NOT a cluster pt. of A
Then. f is always its at c e A
why? In this case, 3 \$ >0 st.
$A \cap (c-\delta, c+\delta) = \{c\}$
> (*) is trivelly satisfied.

Note: "continuity" is a pointuire condition.

Def": f: A -> R is continuous on a subset B = A if f is continuous at EVERY CEB.

In particular. if B=A, then we say f is continuous (everywhere).

Examples of continuous functions

- · fix) = Sinx · cosx · tan X · f(x) = b constant function
- . f(x) = ex or IX • f(x) = X or f(x) = x²
- · f(x) = p(x) polynomial function

Example of dis-continuous functions

Example 1: Consider f:
$$R = A \rightarrow R$$
 defined by
 $f(x) := \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$
Show that f is NOT cts at $X = 0$.
Proof: Note 0 $\in A$ is a cluster pt of $A = R$.
Check whether $\lim_{x \to 0} f(x) \stackrel{?}{=} f(c)$
In this case $\lim_{x \to 0} f(x)$ DOES NOT EXIST !
Chusider $(Xn) = \left(\frac{(-1)^n}{n}\right) \rightarrow 0$ and
note $(-f(xn)) = ((-1)^n)$ is divergent $\int_{Crowne}^{Crowne} \lim_{x \to 0} f(x) \frac{does}{not}$

_ 0

exist .

Remark: For this f, it is discontinuous at O no matter what the same of f(o) is.

Example 2: The function
$$f: A = iR \rightarrow R$$
 defined by
 $f(x) := \begin{cases} 1 & \text{if } x \in Q \\ 0 & \text{if } x \notin Q \end{cases}$

is discontinuous EVERYWHERE.

(#)
Proof: Key idea: Density of Q or Q^c in iR.
Take C E R. There are 2 cases:
Case 1: C E Q.
Claim: limf(x) DOES NOT EXIST.

$$x \rightarrow c$$

Reason: \exists rational numbers $(x_n) \rightarrow c \Rightarrow (f(x_n)) = (1) \rightarrow 1$
 \exists irrational numbers $(x_n') \rightarrow c \Rightarrow (f(x_n)) = (0) \rightarrow 0$
claimsty
DoNE by Seq. criteria!
(#)
Recell: Continuity of f at C E A is sensitive to the

value of f(c).

. More complicated examples in the tutornal lexercise.