MATH2040 Midterm 2
 Reference Solution

1. (40 pts) Determine whether the following statements are true or false. If it is true, prove it; if it is false, give a counterexample.
(a) The sum of two eigenvalues of a linear operator T is also an eigenvalue of T.
(b) A linear operator T on a finite-dimensional vector space is invertible if and only if zero is not an eigenvalue of T.
(c) Let T be an invertible linear operator. A scalar λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1}.
(d) If T is a linear operator on a finite-dimensional vector space V, then for any $v \in V$ the T-cyclic subspace generated by v is the same as the T-cyclic subspace generated by $T(v)$.

Solution:

(a) False.

Consider $T: \mathbb{R} \rightarrow \mathbb{R}$ be the identity map on \mathbb{R}. Then $1 \in \mathbb{R}$ is an eigenvalue of T but $2=1+1$ is not. (In fact, 1 is the unique eigenvalue of T)

This is Question 5.1.1(f) in Practice Problems of Homework 4.
(b) True.

Suppose T is invertible. Then for all $v \neq 0$ we have $T v \neq 0=0 \cdot v$. This implies that 0 is not an eigenvalue of T.

Suppose T is not invertible. Since the vector space V is finite-dimensional, this implies that T is not one-to-one. So there exists nonzero $v \in \mathrm{~N}(T)$, or equivalently $T v=0=0 \cdot v$. Hence 0 is an eigenvalue of T (with an eigenvector v).
Thus T is invertible if and only if 0 is not an eigenvalue of T.
This is Question 5.1.8(a) in Practice Problems of Homework 4.
(c) True.

Suppose λ is an eigenvalue of T. Since T is invertible, $\lambda \neq 0$. Also, by the definition of eigenvalue, there exists nonzero $v \in V$ such that $T v=\lambda v$, so $T^{-1} v=T^{-1}\left(\lambda^{-1} \lambda v\right)=\lambda^{-1} T^{-1}(T v)=\lambda^{-1} v$. Since v is nonzero, this implies that λ^{-1} is an eigenvalue of T^{-1}.
Suppose λ^{-1} is an eigenvalue of T^{-1}. Since T is invertible, T^{-1} is also invertible. So λ^{-1} is nonzero. By the previous proof, $\lambda=\left(\lambda^{-1}\right)^{-1}$ is an eigenvalue of $\left(T^{-1}\right)^{-1}=T$.
So λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1}.
This is Question 5.1.8(b) in Practice Problems of Homework 4.
(d) False.

Consider $T=\mathrm{L}_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ where $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in M_{2 \times 2}(\mathbb{R})$, and $v=\binom{0}{1} \in \mathbb{R}^{2}$. Observe that $T(v)=\binom{1}{0}, T^{2}(v)=\binom{0}{0}$. So the T-cyclic subspace generated by v is $\operatorname{Span}(\{v, T v\})=\mathbb{R}^{2}$ while the T-cyclic subspace generated by $T(v)$ is $\operatorname{Span}(\{T v\})=\left\{\binom{a}{0}: a \in \mathbb{R}\right\} \neq \mathbb{R}^{2}$.
This is Question 5.4.1(d) in Practice Problems of Homework 5.
2. (30 pts) Fo each of the following matrices $A \in M_{n \times n}(\mathbb{R})$, test A for diagonalizability, and if A is diagonalizable, find an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$.
(a) $\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)$
(b) $\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)$
(c) $\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 3 & 1\end{array}\right)$

Solution:

(a) The characteristic polynomial of A is $p(t)=\operatorname{det}\left(A-t I_{2}\right)=t^{2}-2 t-8=(t+2)(t-4)$. As it has $2=\operatorname{dim}\left(\mathbb{R}^{2}\right)$ distinct roots, A is diagonalizable.
The eigenvalues of A are $-2,4$.

- For $\lambda=-2$, the eigenspace is $E_{-2}=\mathrm{N}\left(A+2 I_{2}\right)=\mathrm{N}\left(\left(\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right)\right)=\operatorname{Span}\left(\left\{\binom{1}{-1}\right\}\right)$, with $\operatorname{basis}\left\{\binom{1}{-1}\right\}$
- For $\lambda=4$, the eigenspace is $E_{4}=\mathrm{N}\left(A-4 I_{2}\right)=\mathrm{N}\left(\left(\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right)\right)=\operatorname{Span}\left(\left\{\binom{1}{1}\right\}\right)$, with basis $\left\{\binom{1}{1}\right\}$.

As $\beta=\left\{\binom{1}{-1},\binom{1}{1}\right\}$ consists of eigenvectors of A with distinct eigenvalues and is of size $|\beta|=2=$ $\operatorname{dim}\left(\mathbb{R}^{2}\right)$, it is an eigenbasis for \mathbb{R}^{2}. So for $Q=[\mathrm{Id}]_{\beta}^{\alpha}=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ with α being the standard basis of \mathbb{R}^{2}, we have $D=Q^{-1} A Q=\left(\begin{array}{cc}-2 & 0 \\ 0 & 4\end{array}\right)$, which is diagonal.
(b) The characteristic polynomial of A is $p(t)=\operatorname{det}\left(A-t I_{2}\right)=(t-1)^{2}$, so A has unique eigenvalue $\lambda=1$.

On this eigenvalue $\lambda=1$, the eigenspace is $E_{1}=\mathrm{N}\left(A-I_{2}\right)=\mathrm{N}\left(\left(\begin{array}{ll}0 & 0 \\ 3 & 0\end{array}\right)\right)=\operatorname{Span}\left(\left\{\binom{0}{1}\right\}\right)$, which is of dimension 1 .
As the eigenvalue $\lambda=1$ has algebraic multiplicity 2 but geometric multiplicity $1 \neq 2, A$ is not diagonalizable.
(c) The characteristic polynomial of A is $p(t)=\operatorname{det}\left(A-t I_{3}\right)=-(t-3)(t+2)(t-4)$. As it has $3=\operatorname{dim}\left(\mathbb{R}^{3}\right)$ distinct roots, A is diagonalizable.
The eigenvalues of A are $-2,3,4$.

- For $\lambda=-2$, the eigenspace is $E_{-2}=\mathrm{N}\left(A+2 I_{3}\right)=\operatorname{Span}\left(\left\{\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)\right\}\right)$, with basis $\left\{\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)\right\}$
- For $\lambda=3$, the eigenspace is $E_{3}=\mathrm{N}\left(A-3 I_{3}\right)=\operatorname{Span}\left(\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}\right)$, with basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$.
- For $\lambda=4$, the eigenspace is $E_{4}=\mathrm{N}\left(A-4 I_{3}\right)=\operatorname{Span}\left(\left\{\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}\right)$, with basis $\left\{\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$.

As $\beta=\left\{\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$ consists of eigenvectors of A with distinct eigenvalues and is of size $|\beta|=3=\operatorname{dim}\left(\mathbb{R}^{3}\right)$, it is an eigenbasis for \mathbb{R}^{3}. So for $Q=[\mathrm{Id}]_{\beta}^{\alpha}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1\end{array}\right)$ with α being the standard basis of \mathbb{R}^{3}, we have $D=Q^{-1} A Q=\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right)$, which is diagonal.
3. (30 pts) Let $T=L_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator on \mathbb{R}^{3}, where

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Find all eigenvalues and eigenvectors of T.
(b) Find an ordered basis β of \mathbb{R}^{3} so that

$$
[T]_{\beta}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(c) Find a polynomial $g(t)$ such that $T^{-1}=g(T)$.

Solution:

(a) The characteristic polynomial of T is $p(t)=\operatorname{det}\left(A-t I_{3}\right)=-t^{3}+3 t^{2}-3 t+1=-(t-1)^{3}$, so T has unique eigenvalue $\lambda=1$.
The corresponding eigenspace is $E_{1}=\mathrm{N}\left(A-I_{3}\right)=\mathrm{N}\left(\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)\right)=\operatorname{Span}\left(\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}\right)$. So the eigenvectors of T are exactly the elements in $E_{1} \backslash\{0\}=\left\{\left(\begin{array}{l}a \\ a \\ b\end{array}\right): a, b \in \mathbb{R},(a, b) \neq(0,0)\right\}$.
(b) For a basis $\beta=\left\{v_{1}, v_{2}, v_{3}\right\}$ that gives the required matrix representation, we must have $T v_{1}=v_{1}$, $T v_{2}=v_{1}+v_{2}, T v_{3}=v_{3}$, so $v_{1}, v_{3} \in E_{1}=\mathrm{N}(T-\mathrm{Id})$ and $(T-\mathrm{Id}) v_{2}=v_{1} \in E_{1} \backslash\{0\}$, which implies that $\left\{v_{1}, v_{3}\right\}$ is a basis of E_{1} and $v_{2} \in \mathrm{~N}\left((T-\mathrm{Id})^{2}\right) \backslash E_{1}$ since $\operatorname{dim}\left(E_{1}\right)=2$.
Note that $p(t)$ splits and T has unique eigenvalue $\lambda=1$, so $K_{1}=\mathbb{R}^{3}, \operatorname{dim}\left(K_{1}\right)=\operatorname{dim}\left(\mathbb{R}^{3}\right)=1+\operatorname{dim}\left(E_{1}\right)$, which implies that $\mathrm{N}\left((T-\mathrm{Id})^{2}\right)=\mathbb{R}^{3}$ (which we can also verify directly). So to construct the required basis, we need to choose a vector $v_{2} \in \mathbb{R}^{3} \backslash E_{1}$. In particular, we may select $v_{2}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. Then with $v_{1}=(T-\mathrm{Id}) v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, we have $v_{1}, v_{3} \in E_{1}$, and it is easy to see that $\beta=\left\{v_{1}, v_{2}, v_{3}\right\}=$ $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ is a linearly independent set of size $|\beta|=3=\operatorname{dim}\left(\mathbb{R}^{3}\right)$, hence a basis of \mathbb{R}^{3}.
By the choice of β it is easy to see that $[T]_{\beta}=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
(c) By Cayley-Hamilton theorem, $-T^{3}+3 T^{2}-3 T+\mathrm{Id}=0$, so Id $=T\left(T^{2}-3 T+3 \mathrm{Id}\right)$, which gives $T^{-1}=$ $T^{2}-3 T+3 \mathrm{Id}=g(T)$ with polynomial $g(t)=t^{2}-3 t+3$.
See also Question 5.4.18(b) in Homework 5.

