MATH2040 Midterm 2
Reference Solution

1. (40 pts) Determine whether the following statements are true or false. If it is true, prove it; if it is false, give a
counterexample.

(a) The sum of two eigenvalues of a linear operator T is also an eigenvalue of T'.

(b) A linear operator T on a finite-dimensional vector space is invertible if and only if zero is not an eigenvalue of
T.

(c) Let T be an invertible linear operator. A scalar A is an eigenvalue of 7' if and only if A~! is an eigenvalue of
T-1.

(d) If T is a linear operator on a finite-dimensional vector space V, then for any v € V the T-cyclic subspace
generated by v is the same as the T-cyclic subspace generated by T'(v).

Solution:
(a) False.

Consider T : R — R be the identity map on R. Then 1 € R is an eigenvalue of T but 2 =1+ 1 is not. (In
fact, 1 is the unique eigenvalue of T')

This is Question 5.1.1(f) in Practice Problems of Homework 4.

(b) True.

Suppose T is invertible. Then for all v # 0 we have Twv £ 0 = 0-v. This implies that 0 is not an eigenvalue
of T.

Suppose T is not invertible. Since the vector space V is finite-dimensional, this implies that 7' is not
one-to-one. So there exists nonzero v € N (1), or equivalently Tv = 0 = 0-v. Hence 0 is an eigenvalue of
T (with an eigenvector v).

Thus T is invertible if and only if 0 is not an eigenvalue of T'.

This is Question 5.1.8(a) in Practice Problems of Homework 4.

(c) True.

Suppose A is an eigenvalue of T'. Since T is invertible, A £ 0. Also, by the definition of eigenvalue, there
exists nonzero v € V such that Tv = Av, so T"tv = T7H(A71 ) = AT 1(Tv) = A~1v. Since v is
nonzero, this implies that A~! is an eigenvalue of T1.

Suppose A~! is an eigenvalue of T~1. Since T is invertible, 7! is also invertible. So A~! is nonzero. By
the previous proof, A = ()\_1)71 is an eigenvalue of (T‘l)f1 =T.
So X is an eigenvalue of T if and only if A~! is an eigenvalue of T1.

This is Question 5.1.8(b) in Practice Problems of Homework 4.

(d) False.

01

Consider T = Ly : R? — R? where A = <0 0

) € Msyx2(R), and v = (?) € R2. Observe that

T(v) = (é), T?(v) = (8) So the T-cyclic subspace generated by v is Span( { v,Tv } ) = R? while the

T-cyclic subspace generated by T'(v) is Span( { Tv } ) = { (g) ca€R } # R2.

This is Question 5.4.1(d) in Practice Problems of Homework 5.




2. (30 pts) Fo each of the following matrices A € M, «,(R), test A for diagonalizability, and if A is diagonalizable,
find an invertible matrix @ and a diagonal matrix D such that Q 'AQ = D.

o ()
o ()

3 0 0

(¢) O 1 3

0 3 1
Solution:

(a) The characteristic polynomial of A is p(t) = det(A—tly) = t>—2t—8 = (t+2)(t—4). As it has 2 = dim(R?)
distinct roots, A is diagonalizable.

The eigenvalues of A are —2,4.

e For A = —2, the eigenspace is E_o = N(A+2I,) =N ( (2 2) ) = Span< { (11> } )7 with
basis{ (_11> }

. . -3 3 1 . .

e For A = 4, the eigenspace is By = N( A—4I; ) =N ( ( 3 _3> ) = Span( { (1) } >7 with basis

1
1 .
As g = { (11) , (1) } consists of eigenvectors of A with distinct eigenvalues and is of size | | = 2 =

dim(R?), it is an eigenbasis for R*. So for Q = [Id]§ = (_11 1

) with a being the standard basis of R?,

-2

we have D = Q7 1AQ = ( 0

2), which is diagonal.

(b) The characteristic polynomial of A is p(t) = det(A — tI5) = (t — 1)?, so A has unique eigenvalue \ = 1.

On this eigenvalue A = 1, the eigenspace is By = N(A— I, ) = N < (g 8) > = Span( { (?) } ),

which is of dimension 1.
As the eigenvalue A = 1 has algebraic multiplicity 2 but geometric multiplicity 1 # 2, A is not diagonaliz-
able.

(c) The characteristic polynomial of A is p(t) = det(A — tI3) = —(t — 3)(t + 2)(t — 4). As it has 3 = dim(R?)
distinct roots, A is diagonalizable.

The eigenvalues of A are —2,3,4.

0 0
e For A\ = —2, the eigenspace is E_o = N( A+ 23 ) = Span 1 , with basis 1
—1 —1
1 1
e For A = 3, the eigenspace is F3 = N( A — 313 ) = Span 0 , with basis 0
0 0
0 0
e For A\ =4, the eigenspace is F4 = N( A — 413 ) = Span 1 , with basis 1
1 1
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0 1 0

As B = 1 1,10),11 consists of eigenvectors of A with distinct eigenvalues and is of size
-1 0 1
0 10
| 8| =3 = dim(R?), it is an eigenbasis for R*. Sofor @ = [Id]§ = | 1 0 1| with a being the standard
-1 0 1

-2

basis of R3, we have D = Q14Q = | 0 , which is diagonal.
0

S w o
= O O

3. (30 pts) Let T = L : R* — R3 be a linear operator on R3, where

2 -1 0
A=11 0 0
0 0 1
(a) Find all eigenvalues and eigenvectors of T'.
(b) Find an ordered basis 3 of R3 so that
1 1 0
Ts=(0 1 0
0 01

(c) Find a polynomial g(t) such that T-! = ¢(T).

Solution:

(a) The characteristic polynomial of T is p(t) = det(A —tI3) = -t +3t> =3t +1 = —(t — 1)3, so T has unique
eigenvalue A\ = 1.

1 -1 0 1 0
The corresponding eigenspace is By =N(A—1I3) =N 1 -1 0 = Span 11,10
0 0 0 0 1
a
So the eigenvectors of T' are exactly the elements in F; \ {0} = al : abeR, (a,b)#(0,0)
b
(b) For a basis 8 = { v1,v9,v3 } that gives the required matrix representation, we must have Twv; = vy,

Tvy = vy 4+ vg, Tvg = v3, 80 v1,v3 € By =N (T —1d ) and (T —Id)vy = v; € E; \ {0}, which implies that
{ vi,v3 } is a basis of Fy and vo € N ( (T'—1d)? ) \ E; since dim(E;) = 2.

Note that p(t) splits and T has unique eigenvalue A = 1, so K; = R3, dim(K;) = dim(R?) = 1 + dim(E}),
which implies that N ( (7' —1Id)? ) = R® (which we can also verify directly). So to construct the required

1
basis, we need to choose a vector vy € R3 \ E;. In particular, we may select v = | 0 |. Then with
0
1 0
vy = (T —Id)vo= (1] and v3 = [ 0 |, we have vy,v3 € Ey, and it is easy to see that 5 = { vy, v2,v3 } =
0 1
1 1 0
11,10],10 is a linearly independent set of size | B | = 3 = dim(IR?), hence a basis of R3.
0 0 1

1 1 0
By the choice of 3 it is easy to see that [T]z= (0 1 0
0 0 1

(c) By Cayley-Hamilton theorem, —7% + 372% — 3T + 1d = 0, so Id = T(T? — 3T + 31d), which gives T—! =
T? — 3T + 31d = g(T) with polynomial g(t) = t? — 3t + 3.

See also Question 5.4.18(b) in Homework 5.
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