
MATH2040 Midterm 2

Reference Solution

1. (40 pts) Determine whether the following statements are true or false. If it is true, prove it; if it is false, give a
counterexample.

(a) The sum of two eigenvalues of a linear operator T is also an eigenvalue of T .

(b) A linear operator T on a finite-dimensional vector space is invertible if and only if zero is not an eigenvalue of
T .

(c) Let T be an invertible linear operator. A scalar λ is an eigenvalue of T if and only if λ−1 is an eigenvalue of
T−1.

(d) If T is a linear operator on a finite-dimensional vector space V , then for any v ∈ V the T -cyclic subspace
generated by v is the same as the T -cyclic subspace generated by T (v).

Solution:

(a) False.

Consider T : R → R be the identity map on R. Then 1 ∈ R is an eigenvalue of T but 2 = 1 + 1 is not. (In
fact, 1 is the unique eigenvalue of T )

This is Question 5.1.1(f) in Practice Problems of Homework 4.

(b) True.

Suppose T is invertible. Then for all v ̸= 0 we have Tv ̸= 0 = 0 · v. This implies that 0 is not an eigenvalue
of T .

Suppose T is not invertible. Since the vector space V is finite-dimensional, this implies that T is not
one-to-one. So there exists nonzero v ∈ N ( T ), or equivalently Tv = 0 = 0 · v. Hence 0 is an eigenvalue of
T (with an eigenvector v).

Thus T is invertible if and only if 0 is not an eigenvalue of T .

This is Question 5.1.8(a) in Practice Problems of Homework 4.

(c) True.

Suppose λ is an eigenvalue of T . Since T is invertible, λ ̸= 0. Also, by the definition of eigenvalue, there
exists nonzero v ∈ V such that Tv = λv, so T−1v = T−1(λ−1λv) = λ−1T−1(Tv) = λ−1v. Since v is
nonzero, this implies that λ−1 is an eigenvalue of T−1.

Suppose λ−1 is an eigenvalue of T−1. Since T is invertible, T−1 is also invertible. So λ−1 is nonzero. By

the previous proof, λ =
(
λ−1

)−1
is an eigenvalue of

(
T−1

)−1
= T .

So λ is an eigenvalue of T if and only if λ−1 is an eigenvalue of T−1.

This is Question 5.1.8(b) in Practice Problems of Homework 4.

(d) False.

Consider T = LA : R2 → R2 where A =

(
0 1
0 0

)
∈ M2×2(R), and v =

(
0
1

)
∈ R2. Observe that

T (v) =

(
1
0

)
, T 2(v) =

(
0
0

)
. So the T -cyclic subspace generated by v is Span( { v, Tv } ) = R2 while the

T -cyclic subspace generated by T (v) is Span( { Tv } ) =

{ (
a
0

)
: a ∈ R

}
̸= R2.

This is Question 5.4.1(d) in Practice Problems of Homework 5.
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2. (30 pts) Fo each of the following matrices A ∈ Mn×n(R), test A for diagonalizability, and if A is diagonalizable,
find an invertible matrix Q and a diagonal matrix D such that Q−1AQ = D.

(a)

(
1 3
3 1

)
(b)

(
1 0
3 1

)

(c)

3 0 0
0 1 3
0 3 1



Solution:

(a) The characteristic polynomial of A is p(t) = det(A−tI2) = t2−2t−8 = (t+2)(t−4). As it has 2 = dim(R2)
distinct roots, A is diagonalizable.

The eigenvalues of A are −2, 4.

• For λ = −2, the eigenspace is E−2 = N ( A + 2I2 ) = N

( (
3 3
3 3

) )
= Span

( { (
1
−1

) } )
, with

basis

{ (
1
−1

) }
• For λ = 4, the eigenspace is E4 = N ( A− 4I2 ) = N

( (
−3 3
3 −3

) )
= Span

( { (
1
1

) } )
, with basis{ (

1
1

) }
.

As β =

{ (
1
−1

)
,

(
1
1

) }
consists of eigenvectors of A with distinct eigenvalues and is of size | β | = 2 =

dim(R2), it is an eigenbasis for R2. So for Q = [Id]αβ =

(
1 1
−1 1

)
with α being the standard basis of R2,

we have D = Q−1AQ =

(
−2 0
0 4

)
, which is diagonal.

(b) The characteristic polynomial of A is p(t) = det(A− tI2) = (t− 1)2, so A has unique eigenvalue λ = 1.

On this eigenvalue λ = 1, the eigenspace is E1 = N ( A − I2 ) = N

( (
0 0
3 0

) )
= Span

( { (
0
1

) } )
,

which is of dimension 1.

As the eigenvalue λ = 1 has algebraic multiplicity 2 but geometric multiplicity 1 ̸= 2, A is not diagonaliz-
able.

(c) The characteristic polynomial of A is p(t) = det(A− tI3) = −(t− 3)(t+ 2)(t− 4). As it has 3 = dim(R3)
distinct roots, A is diagonalizable.

The eigenvalues of A are −2, 3, 4.

• For λ = −2, the eigenspace is E−2 = N ( A+ 2I3 ) = Span

 
 0

1
−1

 
, with basis


 0

1
−1

 
• For λ = 3, the eigenspace is E3 = N ( A− 3I3 ) = Span

 
1
0
0

 
, with basis


1
0
0

 .

• For λ = 4, the eigenspace is E4 = N ( A− 4I3 ) = Span

 
0
1
1

 
, with basis


0
1
1

 .
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As β =


 0

1
−1

 ,

1
0
0

 ,

0
1
1

  consists of eigenvectors of A with distinct eigenvalues and is of size

| β | = 3 = dim(R3), it is an eigenbasis for R3. So for Q = [Id]αβ =

 0 1 0
1 0 1
−1 0 1

 with α being the standard

basis of R3, we have D = Q−1AQ =

−2 0 0
0 3 0
0 0 4

, which is diagonal.

3. (30 pts) Let T = LA : R3 → R3 be a linear operator on R3, where

A =

2 −1 0
1 0 0
0 0 1

 .

(a) Find all eigenvalues and eigenvectors of T .

(b) Find an ordered basis β of R3 so that

[T ]β =

1 1 0
0 1 0
0 0 1

 .

(c) Find a polynomial g(t) such that T−1 = g(T ).

Solution:

(a) The characteristic polynomial of T is p(t) = det(A− tI3) = −t3+3t2− 3t+1 = −(t− 1)3, so T has unique
eigenvalue λ = 1.

The corresponding eigenspace is E1 = N ( A− I3 ) = N

 1 −1 0
1 −1 0
0 0 0

  = Span

 
1
1
0

 ,

0
0
1

 
.

So the eigenvectors of T are exactly the elements in E1 \ {0} =


a
a
b

 : a, b ∈ R, (a, b) ̸= (0, 0)

.

(b) For a basis β = { v1, v2, v3 } that gives the required matrix representation, we must have Tv1 = v1,
Tv2 = v1 + v2, Tv3 = v3, so v1, v3 ∈ E1 = N ( T − Id ) and (T − Id)v2 = v1 ∈ E1 \ {0}, which implies that
{ v1, v3 } is a basis of E1 and v2 ∈ N

(
(T − Id)2

)
\ E1 since dim(E1) = 2.

Note that p(t) splits and T has unique eigenvalue λ = 1, so K1 = R3, dim(K1) = dim(R3) = 1 + dim(E1),
which implies that N

(
(T − Id)2

)
= R3 (which we can also verify directly). So to construct the required

basis, we need to choose a vector v2 ∈ R3 \ E1. In particular, we may select v2 =

1
0
0

. Then with

v1 = (T − Id)v2 =

1
1
0

 and v3 =

0
0
1

, we have v1, v3 ∈ E1, and it is easy to see that β = { v1, v2, v3 } =
1
1
0

 ,

1
0
0

 ,

0
0
1

  is a linearly independent set of size | β | = 3 = dim(R3), hence a basis of R3.

By the choice of β it is easy to see that [T ]β =

1 1 0
0 1 0
0 0 1

.

(c) By Cayley–Hamilton theorem, −T 3 + 3T 2 − 3T + Id = 0, so Id = T (T 2 − 3T + 3Id), which gives T−1 =
T 2 − 3T + 3Id = g(T ) with polynomial g(t) = t2 − 3t+ 3.

See also Question 5.4.18(b) in Homework 5.
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