THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics MATH 2040B (Second Term, 2022-23)
 Linear Algebra II
 Midterm 1
 Date: 22 February 2023

Instructions:

- Answer all 4 questions. Total score: 100 pts. Time allowed: 45 minutes.
- Give adequate explanation and justification for all your calculations and observations and write your proof in a clear and rigorous way.

1. (30 pts) Determine whether the following subsets are subspaces. If it is a subspace, prove it and compute its dimension. If it is not a subspace, briefly explain why.
(a) $S_{1}:=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}-4 a_{2}-a_{3}=0\right\}$ as a subset of \mathbb{R}^{3}.
(b) $S_{2}:=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}^{2}-4 a_{2}^{2}-a_{3}^{2}=0\right\}$ as a subset of \mathbb{R}^{3}.
(c) $S_{3}:=\left\{f(x) \in P_{n}(\mathbb{R}): f(-x)=-f(x)\right\}$ as a subset of $P_{n}(\mathbb{R})$.
(d) The subset S_{4} of $M_{3 \times 3}(\mathbb{R})$ consisting of all non-invertible matrices.
2. (20 pts) For a 3×3 matrix $A \in M_{3 \times 3}(\mathbb{R})$, let $a_{i j}$ denote the $(i, j)^{t h}$-entry of A. Determine whether the following map f is a linear transformation. If it is, write down a basis of the null space $f^{-1}(0)=\left\{A \in M_{3 \times 3}(\mathbb{R}): f(A)=0\right\}$ and compute its dimension; if not, give reasons.
(a) $f=\operatorname{tr}: M_{3 \times 3}(\mathbb{R}) \rightarrow \mathbb{R}$, given by $f(A)=\sum_{i=1}^{3} a_{i i}$, summing over diagonal entries.
(b) $f=\operatorname{det}: M_{3 \times 3}(\mathbb{R}) \rightarrow \mathbb{R}$, given by $f(A)=\operatorname{det}(A)$, the determinant.
3. (30 pts) Let V be a vector space with the ordered basis $\beta=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Define $v_{0}=0$.
(a) Prove that there exists a linear transformation $T: V \rightarrow V$ such that $T\left(v_{j}\right)=v_{j}-2 v_{j-1}$ for $j=1,2 \cdots n$.
(b) Compute $[T]_{\beta}$.
(c) Is T invertible? Prove or disprove it.
4. (20 pts) For each of the following linear operators, find the matrix representation of the transformation with respect to the standard basis.
(a) T_{1} is the reflection of \mathbb{R}^{2} about the line $y=3 x$.
(b) T_{2} is the reflection of \mathbb{R}^{3} about the plane $3 y-z=0$.
