
MATH2040 Homework 6

Reference Solution

6.1.8. Provide reasons why each of the following is not an inner product on the given vector spaces.

(a) ⟨ (a, b), (c, d) ⟩ = ac− bd on R2

(b) ⟨ A, B ⟩ = tr(A+B) on M2×2(R)
(c) ⟨ f, g ⟩ =

∫ 1

0
f ′(t)g(t) dt on P(R) where ′ denotes differentiation

Solution:

(a) Let v = (1, 1) ∈ R2. Then v ̸= 0 but ⟨ v, v ⟩ = 1 · 1− 1 · 1 = 0. So ⟨ ·, · ⟩ is not an inner product on R2.

(b) Let A =

(
0 1
0 0

)
∈ M2×2(R). Then A ̸= 02×2, but ⟨ A, A ⟩ = tr

(
0 2
0 0

)
= 0. So ⟨ ·, · ⟩ is not an inner product on

M2×2(R).

(c) Let f(x) = 1. Then f ∈ P(R) is nonzero, but ⟨ f, f ⟩ =
∫ 1

0
0 · 1 dt = 0. So ⟨ ·, · ⟩ is not an inner product on P(R).

6.1.17. Let T he a linear operator on an inner product space V , and suppose that ∥ T (x) ∥ = ∥ x ∥ for all x. Prove that T is
one-to-one.

Solution: For all x ∈ N ( T ), we have T (x) = 0, so ∥ x ∥ = ∥ T (x) ∥ = ∥ 0 ∥ = 0, which by the property of norm implies
x = 0. This implies that N ( T ) = {0}, and so T is injective.

6.1.18. Let V be a vector space over F, where F = R or F = C, and let W be an inner product space over F with inner product ⟨ ·, · ⟩.
If T : V → W is linear, prove that ⟨ x, y ⟩′ = ⟨ T (x), T (y) ⟩ defines an inner product on V if and only if T is one-to-one.

Solution: For arbitrary x, y, z ∈ V and c ∈ F, we have

• ⟨ x+ y, z ⟩′ = ⟨ T (x+ y), T (z) ⟩ = ⟨ T (x), T (z) ⟩+ ⟨ T (y), T (z) ⟩ = ⟨ x, z ⟩′ + ⟨ y, z ⟩′

• ⟨ cx, y ⟩′ = ⟨ T (cx), T (y) ⟩ = c ⟨ T (x), T (y) ⟩ = c ⟨ x, y ⟩′

• ⟨ y, x ⟩′ = ⟨ T (y), T (x) ⟩ = ⟨ T (x), T (y) ⟩ = ⟨ x, y ⟩′

Furthermore, for all x ∈ V , ⟨ x, x ⟩′ = ⟨ T (x), T (x) ⟩ = ∥ T (x) ∥2. Thus ⟨ ·, · ⟩′ defines an inner product if and only if

∥ T (x) ∥2 > 0 for all x ̸= 0, which holds if and only if T (x) ̸= 0 for all x ̸= 0, which holds if and only if T is injective.

6.1.19. Let V be an inner product space. Prove that

(a) ∥ x±y ∥2 = ∥ x ∥2±2ℜ ⟨ x, y ⟩+∥ y ∥2 for all x, y ∈ V , where ℜ ⟨ x, y ⟩ denotes the real part of the complex number ⟨ x, y ⟩
(b) | ∥ x ∥ − ∥ y ∥ | ≤ ∥ x− y ∥ for all x, y ∈ V

Solution: For arbitrary x, y ∈ V ,

(a)

∥ x± y ∥2 = ⟨ x± y, x± y ⟩
= ⟨ x, x ⟩ ± ⟨ x, y ⟩ ± ⟨ y, x ⟩+ ⟨ y, y ⟩

= ∥ x ∥2 ± (⟨ x, y ⟩+ ⟨ x, y ⟩) + ∥ y ∥2

= ∥ x ∥2 ± 2ℜ ⟨ x, y ⟩+ ∥ y ∥2
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(b) By triangular inequality for norm, we have

∥ x ∥ = ∥ (x− y) + y ∥ ≤ ∥ x− y ∥+ ∥ y ∥
∥ y ∥ = ∥ (y − x) + x ∥ ≤ ∥ x− y ∥+ ∥ x ∥

Hence −∥ x− y ∥ ≤ ∥ x ∥ − ∥ y ∥ ≤ ∥ x− y ∥, or | ∥ x ∥ − ∥ y ∥ | ≤ ∥ x− y ∥

6.1.23. Let V = Fn, and let A ∈ Mn×n(F)
(a) Prove that ⟨ x, Ay ⟩ = ⟨ A∗x, y ⟩ for all x, y ∈ V

(b) Suppose that for some B ∈ Mn×n(F), we have ⟨ x, Ay ⟩ = ⟨ Bx, y ⟩ for all x, y ∈ V . Prove that B = A∗

(c) Let α be the standard ordered basis for V . For any orthonormal basis β for V , let Q be the n × n matrix whose columns
are the vectors in β. Prove that Q∗ = Q−1.

(d) Define linear operator T and U by T (x) = Ax and U(x) = A∗x. Show that [U ]β = [T ]∗β for any orthonormal basis β for V .

Solution:

(a) By the definition of the inner product on V = Fn, we have ⟨ x, Ay ⟩ =
∑n

i=1 (Ay)ixi =
∑n

i=1

∑n
j=1 xiAijyj =∑n

j=1

∑n
i=1(A

∗)jixiyj =
∑n

j=1(A
∗x)jyj = ⟨ A∗x, y ⟩ for all x, y ∈ V .

(b) Let x, y ∈ V . By part (a), ⟨ Bx, y ⟩ = ⟨ x, Ay ⟩ = ⟨ A∗x, y ⟩, so ⟨ (B −A∗)x, y ⟩ = 0. Since y is arbitrary, we have
⟨ (B −A∗)x, (B −A∗)x ⟩ = 0 and thus (B −A∗)x = 0. Since x is arbitrary, B −A∗ = 0n×n, or B = A∗.

(c) By assumption, α = { e1, . . . , en } and β = { v1, . . . , vn } which are both orthonormal basis. By the definition of
Q we have Qei = vi for all i ∈ { 1, . . . , n }. So for all x =

∑n
i=1 xiei, y =

∑n
i=1 yiei ∈ V we have ⟨ Qx, Qy ⟩ =∑n

i=1

∑n
j=1 xiyj ⟨ Qei, Qej ⟩ =

∑n
i=1

∑n
j=1 xiyj ⟨ vi, vj ⟩ = ⟨ x, y ⟩.

For all x, y ∈ V we have ⟨ x, Qy ⟩ =
〈
Q(Q−1x), Qy

〉
=

〈
Q−1x, y

〉
. By part (b), Q∗ = Q−1.

Note

Also, δij = ⟨ vj , vi ⟩ = ⟨ Qej , Qei ⟩ =
∑n

k=1

∑n
l=1

∑n
r=1 Qklδjl(Qkrδir)

∗ =
∑n

k=1(Q
∗)ikQkj = (Q∗Q)ij .

(d) Let β be an orthonormal basis for V . Let Q ∈ Mn×n(F) be defined as in part (c). Then Q = [Id]αβ . By definition,

[T ]α = A and [U ]α = A∗, so [U ]β = [Id]βα[U ]α[Id]
α
β = Q−1[T ]∗αQ = (Q∗[T ]α(Q

−1)∗)∗ = (Q−1[T ]αQ)∗ = [T ]∗β .

As β is arbitrary, [U ]β = [T ]∗β for all orthonormal basis β for V .

6.1.29. Let V be a vector space over C, and suppose that [ ·, · ] is a real inner product on V , where V is regarded as a vector space
over R, such that [ x, ix ] = 0 for all x ∈ V . Let ⟨ ·, · ⟩ be the complex-valued function defined by

⟨ x, y ⟩ = [ x, y ] + i [ x, iy ] for x, y ∈ V

Prove that ⟨ ·, · ⟩ is a complex inner product on V .

Solution: Let x, y, z ∈ V , c = a+ib ∈ C with a, b ∈ R. Then 0 = [ x+ y, i(x+ y) ] = [ x, ix ]+[ x, iy ]+[ y, ix ]+[ y, iy ] =
[ x, iy ] + [ y, ix ], hence [ x, iy ] = − [ y, ix ] = − [ ix, y ]. Thus

• ⟨ x+ y, z ⟩ = [ x+ y, z ] + i [ x+ y, iz ] = [ x, z ] + [ y, z ] + i ( [ x, iz ] + [ y, iz ] ) = ( [ x, z ] + i [ x, iz ] ) + ( [ y, z ] +
i [ y, iz ] ) = ⟨ x, z ⟩+ ⟨ y, z ⟩

• ⟨ cx, y ⟩ = [ (a+ ib)x, y ] + i [ (a+ ib)x, iy ] = a [ x, y ] + b [ ix, y ] + ia [ x, iy ] + ib [ ix, iy ] = a ( [ x, y ] + i [ x, iy ] )+
ib ( [ ix, iy ]−i [ ix, y ] ) = a ( [ x, y ]+i [ x, iy ] )+ib (−[ x, −y ]+i [ x, iy ] ) = (a+ib) ( [ x, y ]+i [ x, iy ] ) = c ⟨ x, y ⟩

• ⟨ y, x ⟩ = [ y, x ]− i [ y, ix ] = [ x, y ] + i [ iy, x ] = ⟨ x, y ⟩

• Assuming x ̸= 0, we have ⟨ x, x ⟩ = [ x, x ] + i [ x, ix ] = [ x, x ] > 0.

As x, y, z, c are arbitrary, ⟨ ·, · ⟩ is a complex inner product on V .
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6.2.2(g). Apply the Gram–Schmidt process to the given subset S of the inner product space V to obtain an orthogonal basis for
Span( S ). Then normalize the vectors in this basis to obtain an orthonormal basis β for Span( S ), and compute the Fourier
coefficients of the given vector relative to β. Finally, use Theorem 6.5 to verify your result.

V = M2×2(R), S =

{ (
3 5
−1 1

)
,

(
−1 9
5 −1

)
,

(
7 −17
2 −6

) }
, and A =

(
−1 27
−4 8

)

Solution: Recall that the inner product on V = M2×2(R) is defined as ⟨ A, B ⟩ = tr(BTA) =
∑

i,j AijBij .

(a) Applying the Gram–Schmidt process, we have

w1 =

(
3 5
−1 1

)
so v1 = w1 with ∥ v1 ∥ = 6

w2 =

(
−1 9
5 −1

)
so v2 = w2 −

⟨ w2, v1 ⟩
∥ v1 ∥2

v1 = w2 −
36

36
v1 =

(
−4 4
6 −2

)
with ∥ v2 ∥ = 6

√
2

w3 =

(
7 −17
2 −6

)
so v3 = w3 −

⟨ w3, v1 ⟩
∥ v1 ∥2

v1 −
⟨ w3, v2 ⟩
∥ v2 ∥2

v2 = w3 −
−72

36
v1 −

−72

72
v2 =

(
9 −3
6 −6

)
with ∥ v3 ∥ = 9

√
2

(b) By normalizing the vectors we have β = { e1, e2, e3 } with

e1 = v1/ ∥ v1 ∥ =

(
1/2 5/6
−1/6 1/6

)
e2 = v2/ ∥ v2 ∥ =

(
−
√
2/3

√
2/3

−
√
2/2 −

√
2/6

)
e3 = v3/ ∥ v3 ∥ =

(√
2/2 −

√
2/6√

2/3 −
√
2/3

)

(c) The Fourier coefficients of A relative to β are

c1 = ⟨ A, e1 ⟩ = 24

c2 = ⟨ A, e2 ⟩ = 6
√
2

c3 = ⟨ A, e3 ⟩ = −9
√
2

(d)
∑3

k=1 ckek = 24

(
1/2 5/6
−1/6 1/6

)
+6

√
2

(
−
√
2/3

√
2/3

−
√
2/2 −

√
2/6

)
−9

√
2

(√
2/2 −

√
2/6√

2/3 −
√
2/3

)
=

(
−1 27
−4 8

)
= A. Hence the result

is verified on A.

6.2.6. Let V be an inner product space, and let W be a finite-dimensional subspace of V . If x /∈ W , prove that there exists y ∈ V
such that y ∈ W⊥, but ⟨ x, y ⟩ ≠ 0.

Solution: Since W is finite-dimensional, it has a finite basis β = { w1, . . . , wn } for some n ∈ N and w1, . . . , wn ∈ W . By
Gram–Schmidt process we may assume that β is orthonormal.

Let x ∈ V \W . Then x /∈ Span( β ). So x ̸=
∑n

k=1 ⟨ x, wk ⟩wk ∈ Span( β ), or y = x−
∑n

k=1 ⟨ x, wk ⟩wk ̸= 0. Then

• For each wk ∈ β, ⟨ y, wk ⟩ = ⟨ x−
∑n

l=1 ⟨ x, wl ⟩wl, wk ⟩ = ⟨ x, wk ⟩−
∑n

l=1 ⟨ x, wl ⟩ ⟨ wl, wk ⟩ = ⟨ x, wk ⟩−⟨ x, wk ⟩ =
0, so y ∈ Span( β )

⊥
= W⊥

• ⟨ x, y ⟩ = ⟨ y +
∑n

k=1 ⟨ x, wk ⟩wk, y ⟩ = ⟨ y, y ⟩+
∑n

k=1 ⟨ x, wk ⟩ ⟨ wk, y ⟩ = ∥ y ∥2 ̸= 0

As x is arbitrary, for all x ∈ V \W there exists y ∈ W⊥ such that ⟨ x, y ⟩ ≠ 0.

Note

This does not hold (in general) if W is not finite-dimensional: consider V = C ([0, 1]) equipped with inner product ⟨ f, g ⟩ =∫ 1

0
f(t)g(t) dt, and W = { f ∈ V : f(0) = 0 }, x ∈ V being the constant 1 function. It is easy to verify that ⟨ x, y ⟩ = 0 for

all y ∈ W⊥.
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6.2.10. Let W be a finite-dimensional subspace of an inner product space V . Prove that there exists a projection T on W along W⊥

that satisfies N ( T ) = W⊥. In additional, prove that ∥ T (x) ∥ ≤ ∥ x ∥ for all x ∈ V .

Solution: Since W is finite-dimensional, it has a finite basis β = { w1, . . . , wn } for some n ∈ N and w1, . . . , wn ∈ W . By
Gram–Schmidt process we may assume that β is orthonormal.

Let T : V → V be defined as T (v) =
∑n

k=1 ⟨ v, wk ⟩wk for all v ∈ V . By the property of inner product, T is linear. Since
wk ∈ W for all k, we have T (v) ∈ W for all v ∈ V .

Before showing that T is the projection on W along W⊥, we first need to show that V = W ⊕W⊥, so that it is meaningful
to consider such projection. Note that this is exactly Question 6.2.13(d).

Trivially, W + W⊥ ⊆ V . Let v ∈ V . Then Tv ∈ W . Also, for each k ∈ { 1, . . . , n }, ⟨ v − Tv, wk ⟩ = ⟨ v, wk ⟩ −∑n
l=1 ⟨ v, wl ⟩ ⟨ wl, wk ⟩ = ⟨ v, wk ⟩ − ⟨ v, wk ⟩ = 0. This implies that for all w ∈ W with w =

∑n
k=1 ckwk for some scalars

c1, . . . , cn we have ⟨ v − Tv, w ⟩ =
∑n

k=1 ck ⟨ v − Tv, wk ⟩ = 0. So v − Tv ∈ W⊥, and thus v = Tv + (v − Tv) ∈ W +W⊥.
As v is arbitrary, V ⊆ W +W⊥ and thus V = W +W⊥.

Trivially {0} ⊆ W ∩W⊥. Let v ∈ W ∩W⊥. Then v ∈ W and for all w ∈ W we have ⟨ v, w ⟩ = 0. In particular, ⟨ v, v ⟩ = 0
and so v = 0. This implies that W ∩W⊥ ⊆ {0} and thus W ∩W⊥ = {0}.
Hence V = W ⊕W⊥.

We now show that T is the required map. Let v ∈ V . By the property of direct sum, there exist w ∈ W such that
v − w ∈ W⊥. In particular, ⟨ v − w, wk ⟩ = 0 for all wk ∈ β. Then T (v) = T (w) + T (v − w) = (

∑n
k=1 ⟨ w, wk ⟩wk ) +

(
∑n

k=1 ⟨ v − w, wk ⟩wk ) =
∑n

k=1 ⟨ w, wk ⟩wk = w since w ∈ W and β is an orthonormal basis of W . By the definition, T
is the projection on W along W⊥.

That N ( T ) = W⊥ follows from Question 2.1.26(b) in Homework 2.

For all x ∈ V , we have Tx ∈ W and x − Tx ∈ W⊥, and so ∥ x ∥2 = ∥ Tx + (x − Tx) ∥2 = ∥ Tx ∥2 + ∥ x − Tx ∥2 +

2ℜ ⟨ x, x− Tx ⟩ = ∥ Tx ∥2 + ∥ x− Tx ∥2 ≥ ∥ Tx ∥2, which implies that ∥ Tx ∥ ≤ ∥ x ∥.

Note

This does not hold (in general) if W is not finite-dimensional: with the same example in the remark of Question 6.2.6, it is
easy to verify that W +W⊥ ̸= V , and so there is no such projection.

See also Question 6.2.13, 6.2.16, 6.1.9, 6.1.10.

6.2.13. Let V be an inner product space, S and S0 be subsets of V , and W be a finite-dimensional subspace of V . Prove the following
results.

(a) S0 ⊆ S implies that S⊥ ⊆ S⊥
0

(b) S ⊆ (S⊥)⊥; so Span( S ) ⊆ (S⊥)⊥

(c) W = (W⊥)⊥

(d) V = W ⊕W⊥

Solution:

(a) Let v ∈ S⊥. Then for all s ∈ S, ⟨ s, v ⟩ = 0. Since S ⊇ S0, this implies that ⟨ s, v ⟩ = 0 for all s ∈ S0, and thus v ∈ S⊥
0 .

As v is arbitrary, S⊥ ⊆ S⊥
0

(b) Let v ∈ S. Then for all u ∈ S⊥, ⟨ u, v ⟩ = 0, so v ∈ (S⊥)⊥. As v is arbitrary, S ⊆ (S⊥)⊥.

As (S⊥)⊥ is a subspace of V , by the property of span we have Span( S ) ⊆ (S⊥)⊥.

(c) By the previous part we have W ⊆ (W⊥)⊥.

Let x ∈ (W⊥)⊥. Suppose x /∈ W . Then by the result of Question 6.2.6 there exists y ∈ W⊥ with ⟨ x, y ⟩ ≠ 0. This
contradicts with the assumption that x ∈ (W⊥)⊥, as it would imply that ⟨ x, y ⟩ = 0. Hence x ∈ W . As x is arbitrary,
(W⊥)⊥ ⊆ W .

Hence W = (W⊥)⊥.

Note

The inclusion W ⊇ (W⊥)⊥ does not hold (in general) if W is not finite-dimensional: with the same example in the
remark of Question 6.2.6, it is easy to verify that (W⊥)⊥ ⊋ W . You can however show that (W⊥)⊥ = W with the
induced topology.

Page 4



(d) See the proof of Question 6.2.10 above.

Note

See also the remark of Question 6.2.10.

Note

See also this and this.

6.2.15. Let V be a finite-dimensional inner product space over F
(a) Parseval’s Identity. Let { v1, v2, . . . , vn } be an orthonormal basis for V . For any x, y ∈ V prove that

⟨ x, y ⟩ =
n∑

i=1

⟨ x, vi ⟩ ⟨ y, xi ⟩

(b) Use (a) to prove that if β is an orthonormal basis for V with inner product ⟨ ·, · ⟩, then for any x, y ∈ V

⟨ ϕβ(x), ϕβ(y) ⟩′ = ⟨ [x]β , [y]β ⟩′ = ⟨ x, y ⟩

where ⟨ ·, · ⟩′ is the standard inner product on Fn.

Solution:

(a) Let x, y ∈ V . Since { v1, . . . , vn } is an orthonormal basis for V , x =
∑n

i=1 ⟨ x, vi ⟩ vi and y =
∑n

i=1 ⟨ y, vi ⟩ vi. So

⟨ x, y ⟩ =
〈 ∑n

i=1 ⟨ x, vi ⟩ vi,
∑n

j=1 ⟨ y, vj ⟩ vj
〉
=

∑n
i=1

∑n
j=1 ⟨ x, vi ⟩ ⟨ y, vj ⟩ ⟨ vi, vj ⟩ =

∑n
i=1 ⟨ x, vi ⟩ ⟨ y, vi ⟩.

(b) Let x, y ∈ V , and β = { v1, . . . , vn }. Then [x]β =
(
c1 . . . cn

)T
with x =

∑n
i=1 civi. Since β is orthonormal,

ci = ⟨ x, vi ⟩, so [x]β =
(
⟨ x, v1 ⟩ . . . ⟨ x, vn ⟩

)T
. Similarly, [y]β =

(
⟨ y, v1 ⟩ . . . ⟨ y, vn ⟩

)T
. Hence ⟨ [x]β , [y]β ⟩′ =∑n

i=1([x]β)i([y]β)i =
∑n

i=1 ⟨ x, vi ⟩ ⟨ y, vi ⟩ = ⟨ x, y ⟩ where the last equality comes from the previous part. As x, y, β
are arbitrary, ⟨ [x]β , [y]β ⟩′ = ⟨ x, y ⟩ for all x, y ∈ V and orthonormal basis β for V .

Note

Generalization to infinite-dimensional spaces exists, most remarkably on complete orthogonal systems (e.g. Fourier).

6.2.16. (a) Bessel’s Inequality. Let V be an inner product space, and let S = { v1, v2, . . . , vn } be an orthonormal subset of V . Prove
that for any x ∈ V we have

∥ x ∥2 ≥
n∑

i=1

| ⟨ x, vi ⟩ |2

(b) In the context of (a), prove that Bessel’s inequality is an equality if and only if x ∈ Span( S ).

Solution:

(a) For each x ∈ V we have

0 ≤

∥∥∥∥∥ x−
n∑

i=1

⟨ x, vi ⟩ vi

∥∥∥∥∥
2

= ∥ x ∥2 +

∥∥∥∥∥
n∑

i=1

⟨ x, vi ⟩ vi

∥∥∥∥∥
2

−

〈
x,

n∑
i=1

⟨ x, vi ⟩ vi

〉
−

〈
n∑

i=1

⟨ x, vi ⟩ vi, x

〉

= ∥ x ∥2 +
n∑

i=1

n∑
j=1

⟨ x, vi ⟩ ⟨ x, vj ⟩ ⟨ vi, vj ⟩ −
n∑

i=1

⟨ x, vi ⟩ ⟨ x, vi ⟩ −
n∑

i=1

⟨ x, vi ⟩ ⟨ x, vi ⟩

= ∥ x ∥2 +
n∑

i=1

| ⟨ x, vi ⟩ |2 − 2

n∑
i=1

| ⟨ x, vi ⟩ |2

= ∥ x ∥2 −
n∑

i=1

| ⟨ x, vi ⟩ |2

or equivalently ∥ x ∥2 ≥
∑n

i=1 | ⟨ x, vi ⟩ |
2
.
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(b) By the proof of the previous part, the equality holds if and only if ∥ x −
∑n

i=1 ⟨ x, vi ⟩ vi ∥
2
= 0, or equivalently

x =
∑n

i=1 ⟨ x, vi ⟩ vi. As S is orthonormal, this holds if and only if x ∈ Span( S ).

Note

See also this.

6.2.17. Let T be a linear operator on an inner product space V . If ⟨ T (x), y ⟩ = 0 for all x, y ∈ V , prove that T = T0. In fact, prove
this result if the equality holds for all x and y in some basis for V .

Solution:

(a) Let x ∈ V . By assumption on T , by choosing y = T (x) ∈ V we have 0 = ⟨ T (x), T (x) ⟩ = ∥ T (x) ∥2, so T (x) = 0. As x
is arbitrary, T = 0.

(b) Let β be a basis for V , and assume that ⟨ T (x), y ⟩ = 0 for all x, y ∈ β.

Let x ∈ β. Since β is a basis of V , there exists n ∈ N, distinct β1, . . . , βn ∈ β, and c1, . . . , cn ∈ F such that T (x) =∑n
i=1 ciβi. Then ∥ T (x) ∥2 = ⟨ T (x), T (x) ⟩ =

∑n
i=1 ci ⟨ T (x), βi ⟩ = 0. This implies that T (x) = 0. As x ∈ β is

arbitrary, T vanishes on a basis and so is the zero map.

Practice Problems

6.1.1. Label the following statements as true or false.

(a) An inner product is a scalar-valued function on the set of ordered pairs of vectors.

(b) An inner product space must be over the field of real or complex numbers.

(c) An inner product is linear in both components.

(d) There is exactly one inner product on the vector space Rn.

(e) The triangle inequality only holds in finite-dimensional inner product spaces.

(f) Only square matrices have a conjugate-transpose.

(g) If x, y, and z are vectors in an inner product space such that ⟨ x, y ⟩ = ⟨ x, z ⟩, then y = z.

(h) If ⟨ x, y ⟩ = 0 for all x in an inner product space, then y = 0.

Solution:

(a) True

(b) False. In the definition of inner product space, we only need the field to be ordered (so that ⟨ x, x ⟩ > 0 is well-defined)
and have a conjugation defined (which may be the identity map, as in the real case). The restriction on real and complex
numbers is mostly to make things easier. See this wiki article and this answer on MSE.

(c) False. A complex inner product is not linear in the second component (it is conjugate linear)

(d) False

(e) False

(f) False

(g) False

(h) True

6.1.3. In C ([0, 1]), let f(t) = t and g(t) = et. Compute ⟨ f, g ⟩, ∥ f ∥, ∥ g ∥, and ∥ f + g ∥ with the inner product ⟨ f, g ⟩ =∫ 1

0
f(t)g(t) dt. Then verify both the Cauchy–Schwarz inequality and the triangle inequality.
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Solution:

• ⟨ f, g ⟩ =
∫ 1

0
tdet = tet|10 −

∫ 1

0
et dt = e− (e− 1) = 1

• ∥ f ∥2 =
∫ 1

0
t2 dt = 1

3 , so ∥ f ∥ =
√

1
3 ≈ 0.577

• ∥ g ∥2 =
∫ 1

0
(et)2 dt = 1

2 (e
2 − 1), so ∥ g ∥ =

√
1
2 (e

2 − 1) ≈ 1.787

• ∥ f + g ∥2 =
∫ 1

0
(t + et)2 dt =

∫ 1

0
t2 dt +

∫ 1

0
e2t dt + 2

∫ 1

0
tet dt = 1

3 + 1
2 (e

2 − 1) + 2 = 1
3 + 1

2 (e
2 + 3), so ∥ f + g ∥ =√

1
3 + 1

2 (e
2 + 3) ≈ 2.351

Then ∥ f ∥ ∥ g ∥ > 0.57 × 1.78 = 1.0146 > 1 = | ⟨ f, g ⟩ | and ∥ f ∥ + ∥ g ∥ > 0.575 + 1.785 = 2.36 > ∥ f + g ∥. So
Cauchy–Schwarz inequality and triangular inequality are verified on the pair f, g.

Note

There are better ways to compare the square roots than the numeric one presented here.

6.1.9. Let β be a basis for a finite-dimensional inner product space.

(a) Prove that if ⟨ x, z ⟩ = 0 for all z ∈ β, then x = 0

(b) Prove that if ⟨ x, z ⟩ = ⟨ y, z ⟩ for all z ∈ β, then x = y.

Solution: Since β is a basis of a finite-dimensional space, it is also finite. Hence we may assume that β = { v1, . . . , vn } for
some n ∈ N.
(a) As x ∈ V , there exist c1, . . . , cn ∈ F such that x =

∑n
i=1 civi. Then ⟨ x, x ⟩ =

∑n
i=1 ci ⟨ x, vi ⟩ = 0 as v1, . . . , vn ∈ β.

This implies that x = 0.

(b) By the linearity of inner product we have ⟨ x− y, z ⟩ = ⟨ x, z ⟩ − ⟨ y, z ⟩ = 0 for all z ∈ β. By the previous part,
x− y = 0, and so x = y.

6.1.10. Let V be an inner product space, and suppose that x and y are orthogonal vectors in V. Prove that ∥ x+y ∥2 = ∥ x ∥2+∥ y ∥2.
Deduce the Pythagorean theorem in R2.

Solution: Since x, y are orthogonal, ⟨ x, y ⟩ = 0. So by the result of Question 6.1.19(a), ∥ x + y ∥2 = ∥ x ∥2 + ⟨ x, y ⟩ +
⟨ x, y ⟩+ ∥ y ∥2 = ∥ x ∥2 + ∥ y ∥2.
As two vectors in R2 are orthogonal if and only if they are perpendicular to each other, and the norm induced by the standard
inner product on R2 is exactly the length of the vector, we have the following result:

The square of the length of the hypotenuse in a right triangular is the sum of the squares of the lengths of its
sides

which is exactly the Pythagorean theorem.

6.1.11. Prove the parallelogram law on an inner product space V ; that is, show that

∥ x+ y ∥2 + ∥ x− y ∥2 = 2 ∥ x ∥2 + 2 ∥ y ∥2 for all x, y ∈ V

What does this equation state about parallelograms in R2?

Solution: By the result of Question 6.1.19(a), we have ∥ x + y ∥2 + ∥ x − y ∥2 =
(
∥ x ∥2 + ⟨ x, y ⟩ + ⟨ y, x ⟩ + ∥ y ∥2

)
+(

∥ x ∥2 − ⟨ x, y ⟩ − ⟨ y, x ⟩+ ∥ y ∥2
)
= 2 ∥ x ∥2 + 2 ∥ y ∥2 for all x, y ∈ V .

Consider a parallelogram with one of its angle at the origin, and x, y ∈ R2 be the two sides of this angle. Then x+ y, x− y
are vectors of the two diagonals of the parallelogram. This equation implies that the sum of squares of the lengths of the
diagonals in a parallelogram is exactly the sum of squares of the lengths of its sides.
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6.1.20. Let V be an inner product space over F. Prove the polar identities: For all x, y ∈ V ,

(a) ⟨ x, y ⟩ = 1
4 ∥ x+ y ∥2 − 1

4 ∥ x− y ∥2 if F = R;

(b) ⟨ x, y ⟩ = 1
4

∑4
k=1 i

k
∥∥ x+ iky

∥∥2 if F = C, where i2 = −1

Solution:

(a) 1
4 ∥ x+ y ∥2− 1

4 ∥ x− y ∥2 = 1
4

(
∥ x ∥2+ ⟨ x, y ⟩+ ⟨ y, x ⟩+ ∥ y ∥2

)
− 1

4

(
∥ x ∥2−⟨ x, y ⟩− ⟨ y, x ⟩+ ∥ y ∥2

)
= ⟨ x, y ⟩

(b)

1

4

4∑
k=1

ik
∥∥ x+ iky

∥∥2 =
1

4

[
i ·

(
∥ x ∥2 + ∥ y ∥2 + ⟨ x, iy ⟩+ ⟨ iy, x ⟩

)
− 1 ·

(
∥ x ∥2 + ∥ y ∥2 + ⟨ x, −y ⟩+ ⟨ −y, x ⟩

)
− i ·

(
∥ x ∥2 + ∥ y ∥2 + ⟨ x, −iy ⟩+ ⟨ −iy, x ⟩

)
+ 1 ·

(
∥ x ∥2 + ∥ y ∥2 + ⟨ x, y ⟩+ ⟨ y, x ⟩

) ]
=

1

4
[ (⟨ x, y ⟩ − ⟨ y, x ⟩) + (⟨ x, y ⟩+ ⟨ y, x ⟩) + (⟨ x, y ⟩ − ⟨ y, x ⟩) + (⟨ x, y ⟩+ ⟨ y, x ⟩) ]

= ⟨ x, y ⟩

Note

You can show the following theorem often attributed to von Neumann: if a norm on a real or complex vector space satisfies
parallelogram law (Question 6.1.11), then it is induced by the inner product constructed by the polar identity.

You can also show the following: if ω ∈ C\{±1} satisfies ωn = 1 for some integer n ≥ 3, then ⟨ x, y ⟩ = 1
n

∑n
k=1 ω

k
∥∥ x+ωky

∥∥2
for all x, y in a complex inner product space.

See also this.

6.1.21. Let A be an n× n matrix. Define

A1 =
1

2
(A+A∗) and A2 =

1

2i
(A−A∗)

(a) Prove that A∗
1 = A1, A

∗
2 = A2, and A = A1 + iA2. Would it be reasonable to define A1 and A2 to be the real and imaginary

parts, respectively, of the matrix A?

(b) Let A be an n × n matrix. Prove that the representation in (a) is unique. That is, prove that if A = B1 + iB2, where
B∗

1 = B1 and B∗
2 = B2, then B1 = A1 and B2 = A2.

Solution:

(a) • A∗
1 =

(
1
2 (A+A∗)

)∗
= 1

2 (A
∗ + (A∗)∗) = 1

2 (A
∗ +A) = A1

• A∗
2 =

(
1
2i (A−A∗)

)∗
= 1

−2i (A
∗ − (A∗)∗) = 1

2i (A−A∗) = A2

• A1 + iA2 = 1
2 (A+A∗) + i

2i (A−A∗) = 1
2 (A+A) = A

Note that for a complex number z ∈ C we have ℜ(z) = 1
2 (z + z∗) and ℑ(z) = 1

2i (z − z∗) with z∗ = z. Hence this
definition extends the usual definition of real part and imaginary part to matrices, and thus is a reasonable definition.

(b) Suppose A = B1 + iB2 with B1 = B∗
1 and B2 = B∗

2 . Then A∗ = (B1 + iB2)
∗ = B∗

1 − iB∗
2 = B1 − iB2. So

A1 = 1
2 (A+A∗) = 1

2 ( (B1 + iB2) + (B1 − iB2) ) = B1, A2 = 1
2i (A−A∗) = 1

2i ( (B1 + iB2)− (B1 − iB2) ) = B2.

Note

See also this and perhaps more popularly this.

6.1.28. Let V be a complex inner product space with an inner product ⟨ ·, · ⟩. Let [ ·, · ] be the real-valued function such that [ x, y ]
is the real part of the complex number ⟨ x, y ⟩ for all x, y ∈ V . Prove that [ ·, · ] is an inner product for V , where V is regarded
as a vector space over R. Prove, furthermore, that [ x, ix ] = 0 for all x ∈ V .
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Solution: Denote the real vector space as VR. For all x, y, z ∈ VR and c ∈ R,

• [ x+ y, z ] = ℜ ⟨ x+ y, z ⟩ = ℜ (⟨ x, z ⟩+ ⟨ y, z ⟩) = ℜ ⟨ x, z ⟩+ ℜ ⟨ y, z ⟩ = [ x, z ] + [ y, z ]

• [ cx, y ] = ℜ ⟨ cx, y ⟩ = ℜ (c ⟨ x, y ⟩) = cℜ ⟨ x, y ⟩ = c [ x, y ] as c ∈ R

• [ y, x ] = ℜ ⟨ y, x ⟩ = 1
2

(
⟨ y, x ⟩+ ⟨ y, x ⟩

)
= 1

2 (⟨ x, y ⟩+ ⟨ y, x ⟩) = ℜ ⟨ x, y ⟩ = [ x, y ]

• Assuming x ̸= 0, we have [ x, x ] = ℜ ⟨ x, x ⟩ = ⟨ x, x ⟩ > 0 as ⟨ x, x ⟩ ∈ R.

As x, y, z, c are arbitrary, [ ·, · ] is a real inner product on VR.

For all x ∈ VR, we also have [ x, ix ] = ℜ ⟨ x, ix ⟩ = 1
2

(
⟨ x, ix ⟩+ ⟨ x, ix ⟩

)
= 1

2 (−i ⟨ x, x ⟩+ i ⟨ x, x ⟩) = 0.

Note

See also Question 6.1.29.

6.2.1. Label the following statements as true or false.

(a) The Gram–Schmidt orthogonalization process allows us to construct an orthonormal set from an arbitrary set of vectors.

(b) Every nonzero finite-dimensional inner product space has an orthonormal basis.

(c) The orthogonal complement of any set is a subspace.

(d) If { v1, v2, . . . , vn } is a basis for an inner product space V , then for any x ∈ V the scalars ⟨ x, vi ⟩ are the Fourier coefficients
of x.

(e) An orthonormal basis must be an ordered basis.

(f) Every orthogonal set is linearly independent.

(g) Every orthonormal set is linearly independent.

Solution:

(a) True, but note that the empty set is also by definition orthonormal. If instead of just “an orthonormal set” we want “an
orthonormal set that has the same span”, then the statement is false: Gram–Schmidt process is defined by induction
on natural numbers and so can only gives countably many vectors. For inner product spaces with uncountable bases it
may be necessary to consider induction on uncountable sets. See also this.

(b) True

(c) True

(d) True

(e) True

(f) False

(g) True

6.2.4. Let S = { (1, 0, i), (1, 2, 1) } in C3. Compute S⊥.

Solution: For (a, b, c) ∈ C3, (a, b, c) ∈ S⊥ if and only if ⟨ (a, b, c), (1, 0, i) ⟩ = a−ic = 0 and ⟨ (a, b, c), (1, 2, 1) ⟩ = a+2b+c =

0. This implies that S⊥ = N

( (
1 0 −i
1 2 1

) )
= Span( { (2i,−1− i, 2) } )

6.2.14. Let W1 and W2 be subspaces of a finite-dimensional inner product space. Prove that (W1 + W2)
⊥ = W⊥

1 ∩ W⊥
2 and

(W1 ∩W2)
⊥ = W⊥

1 +W⊥
2 .
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Solution:

(a) Let x ∈ (W1 + W2)
⊥. Then for all w1 ∈ W1, w2 ∈ W2 we have ⟨ x, w1 + w2 ⟩ = 0. As W2 is a subspace, 0 ∈ W2.

So for all w ∈ W1, we have ⟨ x, w1 ⟩ = ⟨ x, w1 + 0 ⟩ = 0. This implies that x ∈ W⊥
1 . Similarly we have x ∈ W⊥

2 , so
x ∈ W⊥

1 ∩W⊥
2 . As x is arbitrary, (W1 +W2)

⊥ ⊆ W⊥
1 ∩W⊥

2 .

Let x ∈ W⊥
1 ∩W⊥

2 . Then x ∈ W⊥
1 and x ∈ W⊥

2 , so for all w1 ∈ W1 and w2 ∈ W2 we have ⟨ x, w1 ⟩ = ⟨ x, w2 ⟩ = 0, and
so ⟨ x, w1 + w2 ⟩ = 0. This implies that x ∈ (W1 +W2)

⊥. As x is arbitrary, W⊥
1 ∩W⊥

2 ⊆ (W1 +W2)
⊥.

Hence (W1 +W2)
⊥ = W⊥

1 ∩W⊥
2 .

(b) Since the space is finite-dimensional, by the result of Question 6.2.13(c), (W⊥
1 +W⊥

2 )⊥ = (W⊥
1 )⊥ ∩ (W⊥

2 )⊥ = W1 +W2,
which gives (W1 +W2)

⊥ = ((W⊥
1 +W⊥

2 )⊥)⊥ = W⊥
1 +W⊥

2 .

Note

Unlike the previous part, this does not hold if the space is not finite-dimensional. See Question 6.2.13(c).

6.2.18. Let V = C ([−1, 1]). Suppose that We and W0 denote the subspaces of V consisting of the even and odd functions, respectively.
Prove that W⊥

e = Wo, where the inner product on V is defined by

⟨ f, g ⟩ =
∫ 1

−1

f(t)g(t) dt

Solution: Let f ∈ Wo. Then for all g ∈ We, we have ⟨ f, g ⟩ =
∫ 1

−1
f(t)g(t) dt =

∫ 0

−1
f(t)g(t) dt +

∫ 1

0
f(t)g(t) dt =

−
∫ 0

1
f(−t)g(−t) dt +

∫ 1

0
f(t)g(t) dt = −

∫ 1

0
f(t)g(t) dt +

∫ 1

0
f(t)g(t) dt = 0, so f ∈ W⊥

e . As f is arbitrary, this implies that

Wo ⊆ W⊥
e .

It is easy to see that V = We ⊕Wo. As V = We +Wo ⊆ We +W⊥
e ⊆ V , We +W⊥

e = V . Also, f ∈ We ∩W⊥
e if and only if

⟨ f, f ⟩ = 0 or equivalently f = 0, which implies that V = We ⊕W⊥
e .

Let f ∈ W⊥
e . Since V = We ⊕Wo, there exist fe ∈ We and fo ∈ Wo ⊆ W⊥

e such that f = fe + fo, so fe + (fo − f) = 0 is
a decomposition of 0 according to the direct sum V = We ⊕W⊥

e with fe ∈ We and fo − f ∈ W⊥
e . This implies that fe = 0

and f = fo ∈ Wo. As f is arbitrary, W⊥
e ⊆ Wo.

Therefore W⊥
e = Wo.

Note

Compare this with the remark in Question 6.2.13(d).
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