MATH2040 Homework 5 Reference Solution

5.4.2(e). For the following linear operator T on the vector space V, determine whether the given subspace W is a T-invariant subspace of V.

$$
V=M_{2 \times 2}(\mathbb{R}), T(A)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) A, \text { and } W=\left\{A \in V: A^{\top}=A\right\}
$$

Solution: Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in V$. Then $A \in W$, and $T(A)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) \notin W$. This implies that $T(W) \nsubseteq W$, so W is not T-invariant.
5.4.4. Let T be a linear operator on a vector space V, and let W be a T-invariant subspace of V. Prove that W is $g(T)$-invariant for any polynomial $g(t)$.

Solution: Let $g \in \mathrm{P}(\mathbb{F})$. We may assume that $g(t)=\sum_{i=0}^{n} a_{i} t^{i}$ for some $n \in \mathbb{N}$ and $a_{0}, \ldots, a_{n} \in \mathbb{F}$.
Let $w \in W$. Suppose $T^{k}(w) \in W$ for some $k \in \mathbb{N}$. Since W is T-invariant, $T^{k+1}(w)=T\left(T^{k}(w)\right) \in W$. This implies by induction that $T^{n}(w) \in W$ for all $n \in \mathbb{N}$. So $g(T)(w)=\left(\sum_{i=0}^{n} a_{i} T^{i}\right)(w)=\sum_{i=0}^{n} a_{i} T^{i}(w) \in W$ as it is a linear combination of vectors in W. As w is arbitrary, $g(T)(W) \subseteq W$, so W is $g(T)$-invariant.
As g is arbitrary, W is $g(T)$-invariant for all polynomial g.
5.4.6. For each linear operator T on the vector space V, find an ordered basis for the T-cyclic subspace generated by the vector z.
(a) $V=\mathbb{R}^{4}, T(a, b, c, d)=(a+b, b-c, a+c, a+d)$, and $z=e_{1}$
(b) $V=\mathrm{P}_{3}(\mathbb{R}), T(f)=f^{\prime \prime}(x)$, and $z=x^{3}$
(c) $V=M_{2 \times 2}(\mathbb{R}), T(A)=A^{\top}$, and $z=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(d) $V=M_{2 \times 2}(\mathbb{R}), T(A)=\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right) A$, and $z=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

Solution:

(a)

$$
\begin{aligned}
T z=T e_{1} & =(1,0,1,1) \notin \operatorname{Span}\left(\left\{e_{1}\right\}\right) \\
T^{2} e_{1}=T(1,0,1,1) & =(1,-1,2,2) \notin \operatorname{Span}\left(\left\{e_{1}, T e_{1}\right\}\right) \\
T^{3} e_{1}=T(1,-1,2,2) & =(0,-3,3,3)=-3 \cdot(1,0,1,1)+3 \cdot(1,-1,2,2) \in \operatorname{Span}\left(\left\{e_{1}, T e_{1}, T^{2} e_{1}\right\}\right)
\end{aligned}
$$

So $\left\{e_{1}, T e_{1}, T^{2} e_{1}\right\}=\{(1,0,1,1),(1,0,1,1),(1,-1,2,2)\}$ is an ordered basis for the subspace.
(b)

$$
\begin{gathered}
T z=T x^{3}=6 x \notin \operatorname{Span}\left(\left\{x^{3}\right\}\right) \\
T^{2} z=T(6 x)=0 \in \operatorname{Span}\left(\left\{x^{3}, 6 x\right\}\right)
\end{gathered}
$$

So $\{z, T z\}=\left\{x^{3}, 6 x\right\}$ is an ordered basis for the subspace.
(c)

$$
T z=T\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=z
$$

As $z \neq 0,\{z\}=\left\{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}$ is an ordered basis for the subspace.
(d)

$$
\begin{aligned}
T z=T\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & =\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right) \notin \operatorname{Span}(\{z\}) \\
T^{2} z=T\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right) & =\left(\begin{array}{ll}
3 & 3 \\
6 & 6
\end{array}\right)=3 T z \in \operatorname{Span}(\{z, T z\})
\end{aligned}
$$

So $\{z, T z\}=\left\{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right)\right\}$ is an ordered basis for the subspace.
5.4.17. Let A be an $n \times n$ matrix. Prove that $\operatorname{dim}\left(\operatorname{Span}\left(I_{n}, A, A^{2}, \ldots\right)\right) \leq n$.

Solution: Let $p(t)=\operatorname{det}(A-t I)$ be the characteristic polynomial of A. By the property of characteristic polynomial, we may assume that $p(t)=(-1)^{n} t^{n}+\sum_{i=0}^{n-1} a_{i} t^{i}$ for some $a_{0}, \ldots, a_{n-1} \in \mathbb{F}$. By Cayley-Hamilton theorem, $0=p(A)=(-1)^{n} A^{n}+$ $\sum_{i=0}^{n-1} a_{i} A^{i}$. As $(-1)^{n} \neq 0$, this implies that $\left\{I_{n}=A^{0}, A, \ldots, A^{n}\right\}$ is linearly dependent, and $A^{n}=(-1)^{n} \sum_{i=0}^{n-1} a_{i} A^{i}$.
Let $C=\operatorname{Span}\left(\left\{I_{n}, A, \ldots, A^{n-1}\right\}\right)$. We will show by induction that $A^{m} \in C$ for all integer $m \in \mathbb{N}$. This would implies that $\operatorname{Span}\left(\left\{I_{n}, A, A^{2}, \ldots\right\}\right) \subseteq C$ since $\left\{I_{n}, A, A^{2}, \ldots\right\} \subseteq C$. As $C=\operatorname{Span}\left(\left\{I_{n}, A, \ldots, A^{n-1}\right\}\right)$ is spanned by n elements, we would have $\operatorname{dim}\left(\operatorname{Span}\left(\left\{I_{n}, A, A^{2}, \ldots\right\}\right)\right) \leq \operatorname{dim}(C) \leq n$.
Trivially, $A^{0}=I_{n}, \ldots, A^{n-1} \in C$. By the argument above, we also have $A^{n} \in C$. Suppose for some integer $k \in \mathbb{N}$ we have $A^{k} \in C$. Then $A^{k}=\sum_{i=0}^{n-1} c_{i} A^{i}$ for some $c_{0}, \ldots, c_{n-1} \in \mathbb{F}$, so $A^{k+1}=A A^{k}=\sum_{i=0}^{n-1} c_{i} A^{i+1} \in C$ as $A, A^{2}, \ldots, A^{n} \in C$. By induction, we have $A^{m} \in C$ for all $m \in \mathbb{Z}^{+}$.
Hence $\operatorname{dim}\left(\operatorname{Span}\left(\left\{I_{n}, A, A^{2}, \ldots\right\}\right)\right) \leq n$.

Note

$\operatorname{Span}\left(\left\{I_{n}, A, A^{2}, \ldots\right\}\right)=C$. The dimension of C is also the degree of the minimal polynomial of A.
5.4.18. Let A be an $n \times n$ matrix with characteristic polynomial $f(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\ldots+a_{1} t+a_{0}$
(a) Prove that A is invertible if and only if $a_{0} \neq 0$
(b) Prove that if A is invertible, then $A^{-1}=\left(-1 / a_{0}\right)\left[(-1)^{n} A^{n-1}+a_{n-1} A^{n-2}+\ldots+a_{1} I_{n}\right]$
(c) Use (b) to compute A^{-1} for $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1\end{array}\right)$

Solution:

(a) By the result of Question 5.1.20 in Homework 4, the proposition holds.
(b) By Cayley-Hamilton theorem, we have $0=p(A)=(-1)^{n} A^{n}+a_{n-1} A^{n-1}+\ldots+a_{1} A+a_{0} I_{n}$. Since A is invertible, $a_{0} \neq 0$, so $I_{n}=\left(-1 / a_{0}\right)\left((-1)^{n} A^{n}+\ldots+a_{1} A\right)=\left(-1 / a_{0}\right) A\left((-1)^{n} A^{n-1}+a_{n-1} A^{n-2}+\ldots+a_{1} I_{n}\right)$, and thus

$$
\begin{aligned}
A^{-1} & =A^{-1} I_{n}=A^{-1}\left(-1 / a_{0}\right) A\left((-1)^{n} A^{n-1}+a_{n-1} A^{n-2}+\ldots+a_{1} I_{n}\right) \\
& =\left(-1 / a_{0}\right)\left((-1)^{n} A^{n-1}+a_{n-1} A^{n-2}+\ldots+a_{1} I_{n}\right)
\end{aligned}
$$

(c) The characteristic polynomial of A is $p(t)=\operatorname{det}\left(A-t I_{3}\right)=-(t-1)(t-2)(t+1)=-t^{3}+2 t^{2}+t-2$. By part (b), this implies that $A^{-1}=\frac{-1}{-2}\left(-A^{2}+2 A+I_{3}\right)=\frac{1}{2}\left(-\left(\begin{array}{lll}1 & 6 & 6 \\ 0 & 4 & 3 \\ 0 & 0 & 1\end{array}\right)+2\left(\begin{array}{ccc}1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1\end{array}\right)+\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\right)=\left(\begin{array}{ccc}1 & -1 & -2 \\ 0 & 1 / 2 & 3 / 2 \\ 0 & 0 & -1\end{array}\right)$.
5.4.19. Let A denote the $k \times k$ matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & -a_{k-2} \\
0 & 0 & \ldots & 1 & -a_{k-1}
\end{array}\right)
$$

where $a_{0}, a_{1}, \ldots, a_{k-1}$ are arbitrary scalars. Prove that the characteristic polynomial of A is $(-1)^{k}\left(a_{0}+a_{1} t+\ldots+a_{k-1} t^{k-1}+t^{k}\right)$

Solution: We will show the proposition by induction on the size k. Trivially the proposition holds on the case $k=1$ and $k=2$.

Suppose for some integer $n \geq 2$ we have that the characteristic polynomial of

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -b_{0} \\
1 & 0 & \ldots & 0 & -b_{1} \\
0 & 1 & \ldots & 0 & -b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & -b_{n-2} \\
0 & 0 & \ldots & 1 & -b_{n-1}
\end{array}\right) \in M_{n \times n}(\mathbb{F}) \text { is }
$$

$$
\operatorname{det}\left(\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -b_{0} \\
1 & 0 & \ldots & 0 & -b_{1} \\
0 & 1 & \ldots & 0 & -b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & -b_{n-2} \\
0 & 0 & \ldots & 1 & -b_{n-1}
\end{array}\right)-t I_{n}\right)=\operatorname{det}\left(\begin{array}{ccccc}
-t & 0 & \ldots & 0 & -b_{0} \\
1 & -t & \ldots & 0 & -b_{1} \\
0 & 1 & \ldots & 0 & -b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & -t & -b_{n-2} \\
0 & 0 & \ldots & 1 & -b_{n-1}-t
\end{array}\right)=(-1)^{n}\left(b_{0}+b_{1} t+\ldots+b_{n-1} t^{n-1}+t^{n}\right)
$$

for arbitrary scalars b_{0}, \ldots, b_{n-1}. Let $A=\left(\begin{array}{ccccc}0 & 0 & \ldots & 0 & -a_{0} \\ 1 & 0 & \ldots & 0 & -a_{1} \\ 0 & 1 & \ldots & 0 & -a_{2} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \ldots & 0 & -a_{n-1} \\ 0 & 0 & \ldots & 1 & -a_{n}\end{array}\right) \in M_{(n+1) \times(n+1)}(\mathbb{F})$ with scalars $a_{0}, \ldots, a_{n} \in \mathbb{F}$. Then
by expanding along the last column, we can see that the characteristic polynomial of A is

$$
\begin{aligned}
p(t) & =\operatorname{det}\left(A-t I_{n+1}\right)=\operatorname{det}\left(\begin{array}{ccccc}
-t & 0 & \ldots & 0 & -a_{0} \\
1 & -t & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & -t & -a_{n-1} \\
0 & 0 & \ldots & 1 & -a_{n}-t
\end{array}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{(i+1)+(n+1)}\left(-a_{i}\right) \operatorname{det}\left(\begin{array}{cc}
-t I_{i}+J_{i} & 0_{i \times(n-i)} \\
0_{(n-i) \times i} & I_{n-i}-t J_{n-i}^{\top}
\end{array}\right)+(-1)^{(n+1)+(n+1)}\left(-a_{n}-t\right) \operatorname{det}\left(\begin{array}{cccc}
-t & 0 & \ldots & 0 \\
1 & -t & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & -t
\end{array}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{n+i+1} a_{i} \operatorname{det}\left(I_{n-i}-t J_{n-i}^{\top}\right) \operatorname{det}\left(\left(-t I_{i}+J_{i}\right)-0_{i \times(n-i)}\left(I_{n-i}-t J_{n-i}^{\top}\right)^{-1} 0_{(n-i) \times i}\right)+(-1)^{n+1}\left(a_{n}+t\right) t^{n} \\
& =\sum_{i=0}^{n-1}(-1)^{n+i+1} a_{i} \operatorname{det}\left(-t I_{i}+J_{i}\right)+(-1)^{n+1}\left(a_{n}+t\right) t^{n} \\
& =\sum_{i=0}^{n-1}(-1)^{n+1} a_{i} t^{i}+(-1)^{n+1}\left(a_{n}+t\right) t^{n}=(-1)^{n+1}\left(a_{0}+\ldots+a_{n} t^{n}+t^{n+1}\right)
\end{aligned}
$$

where J_{k} is the $k \times k$ lower shift matrix. As a_{0}, \ldots, a_{n} are arbitrary, by induction the proposition holds for all $k \in \mathbb{Z}^{+}$.

Note

The general form of A is $\left(\right.$| $0_{1 \times(k-1)}$ | $-a_{0}$ | | |
| :---: | :---: | :---: | :---: |
| I_{k-1} | $\left(\begin{array}{lll}-a_{1} & \ldots & -a_{k-1}\end{array}\right)^{\top}$ | | |$)$.

As a_{0}, \ldots, a_{k-1} are arbitrary, this implies that every nonzero polynomial with the correct leading coefficient is a characteristic polynomial of its companion matrix.
5.4.22. Let T be a linear operator on a two-dimensional vector space V and suppose that $T \neq c \mathrm{Id}$ for any scalar c. Show that if U is any linear operator on V such that $U T=T U$, then $U=g(T)$ for some polynomial $g(t)$.

Idea: Since V is two-dimensional, by Cayley-Hamilton every power of T with exponent larger than 1 can be expressed as a linear combination of Id and T. So if the proposition holds, we should be able to find a g that is of degree at most 1 .

Again, due to the dimension it suffices to show the proposition on a linearly independent set of two vectors (which would be a basis). How do we find the right vectors? Suppose somehow we have already got one of the vectors $x \in V$. This means that $U x=a x+b T x$ for some a, b. To show the proposition, we need to find another vector $y \in V$ that is not a multiple of x (so that $\{x, y\}$ is linearly independent), and $U y=a y+b T y$, with exactly the same coefficients. It would be hard to ensure this property unless x and y are related in some way. However, as U, T commute, we will always have $U(T x)=T(U x)=T(a x+b T x)=a T x+b T(T x)$. So we may select $y=T x$, as long as x makes $\{x, T x\}$ linearly independent, or equivalently V is T-cyclic generated by x.
How do we make sure that V is T-cyclic? It would be hard to pick one such x without knowing what T is, so we may as well prove it by contradiction. Assuming there is no such x, for each nonzero v we will always have $T v$ being a scalar multiple of v, for otherwise they are linearly independent. This means that every nonzero vector is an eigenvector of T. It remains to show that this implies that T is a multiple of Id (so that we can have a contradiction).

Solution: We first show that V is T-cyclic.
Suppose V is not T-cyclic. Let $v \in V$ be nonzero. Then $V \neq \operatorname{Span}\left(\left\{v, T v, T^{2} v, \ldots\right\}\right)$. Since V is two-dimensional, we must have that $\{v, T v\}$ is linearly dependent, for otherwise $\operatorname{Span}(\{v, T v\}) \subseteq V$ is also two-dimensional and so is V itself, implying that V is T-cyclic. Then there exists scalars a, b, depending on v and not all zero, such that $a v+b T v=0$. Since $v \neq 0$, we cannot have $b=0$, for this would implies that $a v=0$ with $a \neq 0$ and $v \neq 0$. Hence $T v=c_{v} \cdot v$ with $c_{v}=-\frac{a}{b}$ where c_{v} also depends on v. Since v is nonzero, there is only such scalar that satisfies the relation $T v=c v$, so $c(v)=c_{v}$ is a well-defined function on the set $V \backslash\{0\}$.
We will show that $c(v)$, as a function on $V \backslash\{0\}$, is constant. Let $x, y \in V$ be nonzero. Then

- Suppose $\{x, y\}$ is linearly independent. Then $x, y, x+y$ are all nonzero, so $c(x+y) \cdot(x+y)=T(x+y)=T x+T y=$ $c(x) \cdot x+c(y) \cdot y$ and thus $(c(x+y)-c(x)) x+(c(x+y)-c(y)) y=0$. As $\{x, y\}$ is linearly independent, this implies that $c(x+y)-c(x)=c(x+y)-c(y)=0$ and so $c(x)=c(x+y)=c(y)$.
- Suppose $\{x, y\}$ is linearly dependent. As x, y are both nonzero, there exists nonzero $\lambda \in \mathbb{F}$ such that $y=\lambda x$. So $(\lambda c(\lambda x)) \cdot x=c(\lambda x) \cdot(\lambda x)=T(\lambda x)=\lambda T x=\lambda c(x) x$. As $\lambda \neq 0$ and $x \neq 0$, we must have $c(y)=c(\lambda x)=c(x)$

So for all nonzero x, y we always have $c(x)=c(y)$. This means that for some scalar $c \in \mathbb{F}$, we have for all nonzero $v \in V$ that $c(v)=c$ and thus $T v=c v$. As $T 0=0=c \cdot 0$, we have $T v=c v$ for all $v \in V$ and thus $T=c \mathrm{Id}$. This contradicts the assumption on T.
Therefore, V is T-cyclic. So there exists nonzero $v \in V$ such that $V=\operatorname{Span}\left(\left\{v, T v, T^{2} v, \ldots\right\}\right)$. As $v \neq 0$ and V is two-dimensional, we must have that $\beta=\{v, T v\}$ is a basis of V.
Since $U v \in V$, we have $U v=c v+d T v$ for some scalars c, d. Then $U(T v)=U T v=T U v=T(c v+d T v)=c(T v)+d T(T v)$. So $U x=c x+d T x=(c \mathrm{Id}+d T)(x)$ for all $x \in \beta$. As β is a basis of V and U is linear, with the polynomial $g(t)=c+d t$ we must have $U=c \mathrm{Id}+d T=g(T)$.
Therefore $U=g(T)$ for some polynomial g.

Note

The part where we show that V is T-cyclic is the answer for Question 5.4.21, which is also a hint for this question if you read the textbook for a bit.
Note that in the first part a, b are not unique (as $\lambda a, \lambda b$ also verify the relation for all $\lambda \neq 0$), but their ratio $-c=a / b$ is. This answer also proves the following: if T is linear on a vector space (not necessarily finite-dimensional) where every nonzero vector is an eigenvector, T must be a scalar multiple of Id.
5.4.23. Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace of V. Suppose that $v_{1}, v_{2}, \ldots, v_{k}$ are eigenvectors of T corresponding to distinct eigenvalues. Prove that if $v_{1}+v_{2}+\ldots+v_{k}$ is in W, then $v_{i} \in W$ for all i.

Solution: To show the proposition, we will use induction on k. Trivially, the base case where $k=1$ holds.
Suppose for some integer $n \geq 1$ we have $w_{1}, \ldots, w_{n} \in W$ whenever $w_{1}, \ldots, w_{n} \in V$ are eigenvectors of T corresponding to distinct eigenvalues such that $w_{1}+\ldots+w_{n} \in W$. Let $v_{1}, \ldots, v_{n+1} \in V$ be eigenvectors of T corresponding to distinct eigenvalues such that $v_{1}+\ldots+v_{n+1} \in W$. For $i \in\{1, \ldots, n+1\}$ let $\lambda_{i} \in \mathbb{F}$ be the eigenvalue corresponding to v_{i}. Then $T v_{i}=\lambda_{i} v_{i}$ for all $i \in\{1, \ldots, n+1\}$.
Since $v_{1}+\ldots+v_{n+1} \in W$ and W is T-invariant, we have $\lambda_{1} v_{1}+\ldots+\lambda_{n+1} v_{n+1}=T\left(v_{1}+\ldots+v_{n+1}\right) \in W$. As W is a subspace of V, we also have $\lambda_{n+1}\left(v_{1}+\ldots+v_{n+1}\right) \in W$, hence $\left(\lambda_{1}-\lambda_{n+1}\right) v_{1}+\ldots+\left(\lambda_{n}-\lambda_{n+1}\right) v_{n}=\left(\lambda_{1} v_{1}+\ldots+\lambda_{n+1} v_{n+1}\right)-$ $\lambda_{n+1}\left(v_{1}+\ldots+v_{n+1}\right) \in W$. Since $\lambda_{1}, \ldots, \lambda_{n+1}$ are distinct, we have $\lambda_{1}-\lambda_{n+1}, \ldots, \lambda_{n}-\lambda_{n+1}$ are all nonzero, hence $\left(\lambda_{1}-\lambda_{n+1}\right) v_{1}, \ldots,\left(\lambda_{n}-\lambda_{n+1}\right) v_{n}$ are all eigenvectors of T that correspond to distinct eigenvalues. By induction assumption, $\left(\lambda_{1}-\lambda_{n+1}\right) v_{1}, \ldots,\left(\lambda_{n}-\lambda_{n+1}\right) v_{n} \in W$ and thus $v_{1}, \ldots, v_{n} \in W$. This also implies that $v_{n+1}=\left(v_{1}+\ldots+v_{n+1}\right)-v_{1}-\ldots-v_{n} \in$ W.
By induction, the proposition holds for all $n \in \mathbb{Z}^{+}$.
5.4.24. Prove that the restriction of a diagonalizable linear operator T to any nontrivial T-invariant subspace is also diagonalizable.

Idea: How do we approach this problem? Although we know that the characteristic polynomial p_{W} of T_{W} on a nontrivial T-invariant subspace W is a factor of the original characteristic polynomial and so it splits, this tells us nothing about the eigenspaces of T_{W}. However, from an exercise in a previous homework, we know that the eigenspaces of T_{W} must be the intersections of W with the corresponding eigenspaces of T. It then remains to characterize diagonalizablility with a relation between eigenspaces that works well with intersections. The hint in the textbook about using Question 5.4.23 also gives away about which relation to use.

Solution: Let T be a diagonalizable linear operator on a finite-dimensional space V. Then by Theorem 5.11 in textbook, V is a direct sum of the eigenspaces of T. Let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T, and the corresponding eigenspaces be E_{1}, \ldots, E_{k}. Then $V=\bigoplus_{i=1}^{k} E_{i}$, so $V=\sum_{i=1}^{k} E_{i}$ and $E_{i} \cap \sum_{j \neq i} E_{j}=\{0\}$ for all i.
Let $W \subseteq V$ be a nontrivial T-invariant subspace. Then $W \supseteq W \cap E_{i}$ for all i, so $W \supseteq \sum\left(W \cap E_{i}\right)$. Let $w \in W \subseteq V$. Then for each i there exists $v_{i} \in E_{i}$ such that $w=\sum v_{i}$. By permuting the indices we may assume that v_{1}, \ldots, v_{l} are nonzero and $v_{l+1}=\ldots=v_{k}=0$ with $l \in\{0, \ldots, k\}$, with the obvious convention that $l=0$ implies $v_{1}=\ldots=v_{k}=0$ and $l=k$ implies that v_{1}, \ldots, v_{k} are all nonzero. Then $v_{1}+\ldots+v_{l}=w \in W$. By definition, v_{1}, \ldots, v_{l} are eigenvectors that correspond to distinct eigenvalues, so by the result of Question 5.4.23, $v_{1}, \ldots, v_{l} \in W$. Trivially, $v_{l+1}=\ldots=v_{k}=0 \in W$. This implies that $v_{i} \in W \cap E_{i}$ for each i, and so $w \in \sum\left(W \cap E_{i}\right)$. As w is arbitrary, $W \subseteq \sum\left(W \cap E_{i}\right)$ and so $W=\sum\left(W \cap E_{i}\right)$.
For each i, since $\{0\}=W \cap\{0\}=W \cap\left(E_{i} \cap \sum_{j \neq i} E_{j}\right)=\left(W \cap E_{i}\right) \cap \sum_{j \neq i} E_{j} \supseteq\left(W \cap E_{i}\right) \cap \sum_{j \neq i}\left(W \cap E_{j}\right) \supseteq\{0\}$, we have $\left(W \cap E_{i}\right) \cap \sum_{j \neq i}\left(W \cap E_{j}\right)=\{0\}$. Hence $W=\bigoplus_{i=1}^{k}\left(W \cap E_{i}\right)$. By the result of Question 2.1.32 in Homework 2, $E_{\lambda_{i}}\left(T_{W}\right)=\mathrm{N}\left(T_{W}-\lambda_{i} \operatorname{Id}_{W}\right)=\mathrm{N}\left(\left(T-\lambda_{i} \mathrm{Id}\right)_{W}\right)=\mathrm{N}\left(T-\lambda_{i} \mathrm{Id}\right) \cap W=E_{i} \cap W$ for each i. In particular, $S=\left\{W \cap E_{i}\right.$: $\left.W \cap E_{i} \neq\{0\}\right\}$ is the complete set of eigenspaces of T_{W}, and $W=\bigoplus_{E \in S} E$. By Theorem 5.11 in textbook, this implies that T_{W} is diagonalizable.
As W is arbitrary, the restriction of T to any T-invariant subspace is also diagonalizable.
7.1.7(a). Let U be a linear operator on a finite-dimensional vector space V. Prove that $\mathrm{N}(U) \subseteq \mathrm{N}\left(U^{2}\right) \subseteq \ldots \subseteq \mathrm{N}\left(U^{k}\right) \subseteq$ $\mathrm{N}\left(U^{k+1}\right) \subseteq \ldots$.

Solution: Let $k \in \mathbb{Z}^{+}$and $v \in \mathrm{~N}\left(U^{k}\right)$. Then $U^{k}(v)=0$, so $U^{k+1}(v)=U\left(U^{k}(v)\right)=U(0)=0$. Hence $v \in \mathrm{~N}\left(U^{k+1}\right)$. As v is arbitrary, $\mathrm{N}\left(U^{k}\right) \subseteq \mathrm{N}\left(U^{k+1}\right)$. As k is arbitrary, we have $\mathrm{N}(U) \subseteq \mathrm{N}\left(U^{2}\right) \subseteq \ldots$.

Note

See also Question 2.3.16 in Homework 3.
7.1.7(b). Let U be a linear operator on a finite-dimensional vector space V. Prove that if $\operatorname{rank}\left(U^{m}\right)=\operatorname{rank}\left(U^{m+1}\right)$ for some positive integer m, then $\operatorname{rank}\left(U^{m}\right)=\operatorname{rank}\left(U^{k}\right)$ for any positive integer $k \geq m$.

Solution: Let $k \in \mathbb{Z}^{+}$and $y \in \mathrm{R}\left(U^{k+1}\right)$. Then $y=U^{k+1}(x)=U^{k}(U(x)) \in \mathrm{R}\left(U^{k}\right)$ for some $x \in V$. As y is arbitrary, $\mathrm{R}\left(U^{k}\right) \supseteq \mathrm{R}\left(U^{k+1}\right)$. As k is arbitrary, $\mathrm{R}\left(U^{m}\right) \supseteq \mathrm{R}\left(U^{m+1}\right) \supseteq \ldots$
Since $\mathrm{R}\left(U^{m}\right), \mathrm{R}\left(U^{m+1}\right)$ are subspaces of a finite-dimensional space V and $\operatorname{dim}\left(\mathrm{R}\left(U^{m}\right)\right)=\operatorname{rank}\left(U^{m}\right)=\operatorname{rank}\left(U^{m+1}\right)=$ $\operatorname{dim}\left(\mathrm{R}\left(U^{m+1}\right)\right), \mathrm{R}\left(U^{m}\right)=\mathrm{R}\left(U^{m+1}\right)$.
Suppose $\mathrm{R}\left(U^{m}\right)=\mathrm{R}\left(U^{m+k}\right)$ for some $k \in \mathbb{Z}^{+}$. Let $y \in \mathrm{R}\left(U^{m+k}\right)$. Then there exists $x \in V$ such that $y=U^{m+k}(x)=$ $U^{k}\left(U^{m}(x)\right)$ with $U^{m}(x) \in \mathrm{R}\left(U^{m}\right)=\mathrm{R}\left(U^{m+1}\right)$, so there exists $z \in V$ such that $U^{m}(x)=U^{m+1}(z)$ and thus $y=$ $U^{k}\left(U^{m}(x)\right)=U^{k}\left(U^{m+1}(z)\right)=U^{m+k+1}(z) \in \mathrm{R}\left(U^{m+k+1}\right)$. As y is arbitrary, $\mathrm{R}\left(U^{m+k}\right) \subseteq \mathrm{R}\left(U^{m+k+1}\right)$, and thus $\mathrm{R}\left(U^{m}\right)=\mathrm{R}\left(U^{m+k}\right)=\mathrm{R}\left(U^{m+k+1}\right)$.
By induction, $\mathrm{R}\left(U^{m}\right)=\mathrm{R}\left(U^{k}\right)$ for all $k \geq m$, and hence $\operatorname{rank}\left(U^{m}\right)=\operatorname{rank}\left(U^{k}\right)$ for all $k \geq m$.
7.1.7(c). Let U be a linear operator on a finite-dimensional vector space V. Prove that If $\operatorname{rank}\left(U^{m}\right)=\operatorname{rank}\left(U^{m+1}\right)$ for some positive integer m, then $\mathrm{N}\left(U^{m}\right)=\mathrm{N}\left(U^{k}\right)$ for any positive integer $k \geq m$.

Solution: Let $k \geq m$ be integer. By the previous question (Question 7.1.7(b)), $\operatorname{rank}\left(U^{m}\right)=\operatorname{rank}\left(U^{k}\right)$. Since V is finite-dimensional, by dimension theorem $\operatorname{dim}\left(\mathrm{N}\left(U^{m}\right)\right)=\operatorname{nullity}\left(U^{m}\right)=\operatorname{dim}(V)-\operatorname{rank}\left(U^{m}\right)=\operatorname{dim}(V)-\operatorname{rank}\left(U^{k}\right)=$ $\operatorname{nullity}\left(U^{k}\right)=\operatorname{dim}\left(\mathrm{N}\left(U^{k}\right)\right)$. By part (a), $\mathrm{N}\left(U^{m}\right) \subseteq \mathrm{N}\left(U^{k}\right)$, so $\mathrm{N}\left(U^{m}\right)=\mathrm{N}\left(U^{k}\right)$.
As k is arbitrary, $\mathrm{N}\left(U^{m}\right)=\mathrm{N}\left(U^{k}\right)$ for all $k \geq m$.
7.1.7(d). Let V be a finite-dimensional vector space. Let T be a linear operator on V, and let λ be an eigenvalue of T. Prove that if $\operatorname{rank}\left((T-\lambda \mathrm{Id})^{m}\right)=\operatorname{rank}\left((T-\lambda \mathrm{Id})^{m+1}\right)$ for some integer m, then $K_{\lambda}=\mathrm{N}\left((T-\lambda \mathrm{Id})^{m}\right)$.

Solution: By the previous part (Question 7.1.7(c)), $\mathrm{N}\left((T-\lambda \mathrm{Id})^{m}\right)=\mathrm{N}\left((T-\lambda \mathrm{Id})^{k}\right)$ for all $k \geq m$. By the result of Question 7.1.7(a), $\mathrm{N}(T-\lambda \mathrm{Id}) \subseteq \ldots \subseteq \mathrm{N}\left((T-\lambda \operatorname{Id})^{m}\right)$. Hence $K_{\lambda}=\bigcup_{n \in \mathbb{Z}^{+}} \mathrm{N}\left((T-\lambda \operatorname{Id})^{n}\right)=\bigcup_{n=1}^{m} \mathrm{~N}\left((T-\lambda \mathrm{Id})^{n}\right) \cup$ $\bigcup_{n \geq m+1} \mathrm{~N}\left((T-\lambda \mathrm{Id})^{n}\right)=\mathrm{N}\left((T-\lambda \mathrm{Id})^{m}\right) \cup \mathrm{N}\left((T-\lambda \mathrm{Id})^{m}\right)=\mathrm{N}\left((T-\lambda \mathrm{Id})^{m}\right)$.

Practice Problems

5.4.1. Label the following statements as true or false.
(a) There exists a linear operator T with no T-invariant subspace.
(b) If T is a linear operator on a finite-dimensional vector space V and W is a T-invariant subspace of V. then the characteristic polynomial of T_{W} divides the characteristic polynomial of T.
(c) Let T be a linear operator on a finite-dimensional vector space V, and let v and w be in V. If W is the T-cyclic subspace generated by V, W^{\prime} is the T-cyclic subspace generated by w, and $W=W$, then $v=w$.
(d) If T is a linear operator on a finite-dimensional vector space V, then for any $v \in V$ the T-cyclic subspace generated by v is the same as the T-cyclic subspace generated by $T(v)$.
(e) Let T be a linear operator on an n-dimensional vector space. Then there exists a polynomial $g(t)$ of degree n such that $g(T)=T_{0}$.
(f) Any polynomial of degree n with leading coefficient $(-1)^{n}$ is the characteristic polynomial of some linear operator.
(g) If T is a linear operator on a finite-dimensional vector space V, and if V is the direct sum of $k T$-invariant subspaces, then there is an ordered basis β for V such that $[T]_{\beta}$ is a direct sum of k matrices.

Solution:

(a) False
(b) True
(c) False
(d) False
(e) True
(f) True. See Question 5.4.19
(g) True

Solution: Let $A \in M_{n \times n}(\mathbb{F})$ with $n \in \mathbb{Z}^{+}$. Then L_{A} is a linear operator on \mathbb{F}^{n}. Let α be the standard basis of \mathbb{F}^{n}. Then the characteristic polynomial of L_{A} is $p(t)=\operatorname{det}\left(\left[\mathrm{L}_{A}\right]_{\alpha}-t I_{n}\right)=\operatorname{det}\left(A-t I_{n}\right)$, which is also the characteristic polynomial of A.
Assume that $p(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\ldots+a_{0}$ with $a_{0}, \ldots, a_{n-1} \in \mathbb{F}$. Then by Cayley-Hamilton theorem, $p\left(\mathrm{~L}_{A}\right)=$ $(-1)^{n} \mathrm{~L}_{A}^{n}+a_{n-1} \mathrm{~L}_{A}^{n-1}+\ldots+a_{0} \mathrm{Id}=0$. Hence $0=\left[p\left(\mathrm{~L}_{A}\right)\right]_{\alpha}=(-1)^{n}\left[\mathrm{~L}_{A}^{n}\right]_{\alpha}+a_{n-1}\left[\mathrm{~L}_{A}^{n-1}\right]_{\alpha}+\ldots+a_{0}[\operatorname{Id}]_{\alpha}=(-1)^{n}\left[\mathrm{~L}_{A}\right]_{\alpha}^{n}+$ $a_{n-1}\left[\mathrm{~L}_{A}\right]_{\alpha}^{n-1}+\ldots+a_{0} I_{n}=(-1)^{n} A^{n}+a_{n-1} A^{n-1}+\ldots+a_{0} A^{0}=p(A)$.
As A, n are arbitrary, we have $p(A)=0$ for all matrix $A \in M_{n \times n}(\mathbb{F})$ where p is the characteristic polynomial of A.

Note

As mentioned in the remark in the textbook, it is invalid to claim that the proposition holds as $p(A)=\operatorname{det}(A-A I)=$ $\operatorname{det}\left(0_{n \times n}\right)=0$. See this question on MSE for some discussions.
5.4.16. Let T be a linear operator on a finite-dimensional vector space V.
(a) Prove that if the characteristic polynomial of T splits, then so does the characteristic polynomial of the restriction of T to any T-invariant subspace of V.
(b) Deduce that if the characteristic polynomial of T splits, then any nontrivial T-invariant subspace of V contains an eigenvector of T.

Solution:

(a) Let $W \subseteq V$ be a T-invariant subspace of V, and $p(t), p_{W}(t)$ be the characteristic polynomials of T, T_{W} respectively. By theorem 5.21 in textbook, we have p_{W} divides p, so there exists a polynomial q such that $p=p_{W} q$. Trivially, we must have $p_{W}, q \neq 0$. As \mathbb{F} is a field, $\mathbb{F}[t]$ is a PID and so a UFD. Hence we may assume that $p_{W}=u p_{1} \ldots p_{n}$ and $q=u^{\prime} q_{1} \ldots q_{m}$ where u, u^{\prime} are units and thus scalars and $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}$ are primes for some $n, m \in \mathbb{N}$ possibly zero. This implies that $p=\left(u u^{\prime}\right) p_{1} \ldots p_{n} q_{1} \ldots q_{m}$. As p splits, $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}$ must all be linear factors. This implies that $p_{W}=u p_{1} \ldots p_{n}$ is a product of linear factors (and scalars) and thus splits.
(b) Let $W \subseteq V$ be a nontrivial T-invariant subspace of V. Let $p_{W}(t)$ be the characteristic polynomial of T_{W}. By the previous part, p_{W} splits. Let $u, n, p_{1}, \ldots, p_{n}$ be defined as in part (a). Then $n=\operatorname{deg} p_{W}=\operatorname{dim}(W) \geq 1$. This implies that p_{W} is a multiple of a linear factor. This implies that p_{W} has a root λ in \mathbb{F}. By the property of characteristic polynomial, $E_{\lambda}\left(T_{W}\right)$ is nontrivial. Hence T_{W} (and so T) has a eigenvector in W.
5.4.25. (a) Prove the converse to Exercise 18(a) of Section 5.2: If T and U are diagonalizable linear operators on a finite-dimensional vector space V such that $U T=T U$, then T and U are simultaneously diagonalizable.
(b) State and prove a matrix version of (a).

Solution:

(a) Let λ be an eigenvalue of T. Let $v \in E_{\lambda}(T)$. Then $T v=\lambda v$, so $T(U v)=U T v=U(\lambda v)=\lambda U v, U v \in E_{\lambda}(T)$. As v is arbitrary, $U E_{\lambda}(T) \subseteq E_{\lambda}(T)$, and so $E_{\lambda}(T)$ is U-invariant.
Since λ is an eigenvalue of $T, E_{\lambda}(T)$ is nontrivial. As T is diagonalizable, the characteristic polynomial of T splits. So by Question 5.4.24, $U_{E_{\lambda}(T)}$ is diagonalizable, and thus there exists a basis β_{λ} of $E_{\lambda}(T)$ consisting of eigenvectors of $U_{E_{\lambda}(T)}$ (and so of U).
Let $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ be the complete set of distinct eigenvalues of T. As T is diagonalizable, $V=\bigoplus_{i=1}^{k} E_{\lambda_{i}}(T)$. For each $i \in\{1, \ldots, k\}$ let $\beta_{\lambda_{i}}$ be the basis of $E_{\lambda_{i}}(T)$ defined above, and $\beta=\bigcup_{i=1}^{k} \beta_{\lambda_{i}}$. Then β is a union of bases of subspaces whose direct sum is the whole space V, so β is a basis of V. By definition, β is consisting of vectors which are eigenvectors of both T and U. So T and U are simultaneously diagonalizable (as witnessed by β).
(b) Let $A, B \in M_{n \times n}(\mathbb{F})$ be diagonalizable matrices that commute. Then they are simultaneously diagonalizable.

The proof is as follows:
Let $A, B \in M_{n \times n}(\mathbb{F})$ be diagonalizable matrices that commute. Then by Question 5.2 .17 (in Homework 4), $\mathrm{L}_{A}, \mathrm{~L}_{B}$ are diagonalizable linear operators and commute. By part (a), L_{A} and L_{B} are simultaneously diagonalizable. So again by Question 5.2.17, $A=\left[\mathrm{L}_{A}\right]_{\alpha}$ and $B=\left[\mathrm{L}_{B}\right]_{\alpha}$ are simultaneously diagonalizable where α is the standard basis of \mathbb{F}^{n}.

Note

See also this note and section 13 of this reference.
7.1.1. Label the following statements as true or false.
(a) Eigenvectors of a linear operator T are also generalized eigenvectors of T.
(b) It is possible for a generalized eigenvector of a linear operator T to correspond to a scalar that is not an eigenvalue of T.
(c) Any linear operator on a finite-dimensional vector space has a Jordan canonical form.
(d) A cycle of generalized eigenvectors is linearly independent.
(e) There is exactly one cycle of generalized eigenvectors corresponding to each eigenvalue of a linear operator on a finitedimensional vector space.
(f) Let T be a linear operator on a finite-dimensional vector space whose characteristic polynomial splits, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T. If, for each i, β_{i} is a basis for $K_{\lambda_{i}}$, then $\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{k}$ is a Jordan canonical basis for T.
(g) For any Jordan block J, the operator L_{J} has Jordan canonical form J.
(h) Let T be a linear operator on an n-dimensional vector space whose characteristic polynomial splits. Then, for any eigenvalue λ of $T, K_{\lambda}=\mathrm{N}\left((T-\lambda \mathrm{Id})^{n}\right)$.

Solution:

(a) True
(b) False
(c) True
(d) True. See Corollary of Theorem 7.6 in textbook.
(e) False
(f) False
(g) True
(h) True
7.1.7(e). Let V be a finite-dimensional vector space. Let T be a linear operator on V whose characteristic polynomial splits, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T. Prove that T is diagonalizable if and only if $\operatorname{rank}\left(T-\lambda_{i} \operatorname{Id}\right)=\operatorname{rank}\left(\left(T-\lambda_{i} \operatorname{Id}\right)^{2}\right)$ for $1 \leq i \leq k$.

Solution: Suppose T is diagonalizable. Let $i \in\{1, \ldots, k\}$. Then by the corollary of Theorem 7.4 in textbook, we have $E_{\lambda_{i}}=$ $K_{\lambda_{i}}$ and $\operatorname{so} \operatorname{dim}(\mathrm{N}(T-\lambda \operatorname{Id}))=\operatorname{dim}\left(E_{\lambda_{i}}\right)=\operatorname{dim}\left(K_{\lambda_{i}}\right) \geq \operatorname{dim}\left(\mathrm{N}\left(\left(T-\lambda_{i} \operatorname{Id}\right)^{2}\right)\right)$ as $K_{\lambda_{i}} \supseteq \mathrm{~N}\left(\left(T-\lambda_{i} \operatorname{Id}\right)^{2}\right)$. By the result of Question 7.1.7(a), $\mathrm{N}\left(T-\lambda_{i} \operatorname{Id}\right)=\mathrm{N}\left(\left(T-\lambda_{i} \mathrm{Id}\right)^{2}\right)$, so nullity $\left(T-\lambda_{i} \operatorname{Id}\right)=\operatorname{dim}\left(\mathrm{N}\left(T-\lambda_{i} \operatorname{Id}\right)\right)=\operatorname{dim}\left(\mathrm{N}\left(\left(T-\lambda_{i} \operatorname{Id}\right)^{2}\right)\right)=$ nullity $\left(\left(T-\lambda_{i} \operatorname{Id}\right)^{2}\right)$. By dimension theorem, $\operatorname{rank}\left(T-\lambda_{i} \operatorname{Id}\right)=\operatorname{dim}(V)-\operatorname{nullity}\left(T-\lambda_{i} \operatorname{Id}\right)=\operatorname{dim}(V)-\operatorname{nullity}\left(\left(T-\lambda_{i} \operatorname{Id}\right)^{2}\right)=$ $\operatorname{rank}\left(\left(T-\lambda_{i} \mathrm{Id}\right)^{2}\right)$. As i is arbitrary, $\operatorname{rank}\left(T-\lambda_{i} \operatorname{Id}\right)=\operatorname{rank}\left(\left(T-\lambda_{i} \operatorname{Id}\right)^{2}\right)$ for all $i \in\{1, \ldots, k\}$.
Suppose $\operatorname{rank}\left(T-\lambda_{i} \mathrm{Id}\right)=\operatorname{rank}\left(\left(T-\lambda_{i} \operatorname{Id}\right)^{2}\right)$ for all $i \in\{1, \ldots, k\}$. By the result of Question 7.1.7(d), $K_{\lambda_{i}}=\mathrm{N}\left(T-\lambda_{i} I\right)=$ $E_{\lambda_{i}}$ for all $i \in\{1, \ldots, k\}$. By the corollary of Theorem 7.4 in textbook, T is diagonalizable.
7.1.7(f). Prove that if T is a diagonalizable linear operator on a finite dimensional vector space V and W is a T-invariant subspace of V, then T_{W} is diagonalizable.

Solution: Since T is diagonalizable, the characteristic polynomial of T splits. Let $\lambda_{1}, \ldots, \lambda_{k}$ be all the distinct eigenvalues of T for some $k \in \mathbb{Z}^{+}$. Since W is T-invariant, the characteristic polynomial of T_{W} divides the characteristic polynomial of T, and so the eigenvalues of T_{W} are all contained in $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$.
Let $i \in\{1, \ldots, k\}$. By the result of Question $7.1 .7(\mathrm{e})$, we have $\operatorname{rank}\left(T-\lambda_{i} \mathrm{Id}\right)=\operatorname{rank}\left(\left(T-\lambda_{i} \mathrm{Id}\right)^{2}\right)$, so by dimension theorem (as in part (e)), $\mathrm{N}\left(T-\lambda_{i} \mathrm{Id}\right)=\mathrm{N}\left(\left(T-\lambda_{i} \mathrm{Id}\right)^{2}\right)$. By the result of Question 2.1.32 in Homework $2, \mathrm{~N}\left(T_{W}-\right.$ $\left.\lambda_{i} \operatorname{Id}_{W}\right)=\mathrm{N}\left(\left(T-\lambda_{i} \operatorname{Id}\right)_{W}\right)=\mathrm{N}\left(T-\lambda_{i} \operatorname{Id}\right) \cap W=\mathrm{N}\left(\left(T-\lambda_{i} \operatorname{Id}\right)^{2}\right) \cap W=\mathrm{N}\left(\left(T-\lambda_{i} \operatorname{Id}\right)_{W}^{2}\right)=\mathrm{N}\left(\left(T_{W}-\lambda_{i} \operatorname{Id}_{W}\right)^{2}\right)$. By dimension theorem, $\operatorname{rank}\left(T_{W}-\lambda_{i} \operatorname{Id}_{W}\right)=\operatorname{rank}\left(\left(T_{W}-\lambda_{i} \operatorname{Id}_{W}\right)^{2}\right)$. As i is arbitrary, for each eigenvalue μ of T_{W} we have $\operatorname{rank}\left(T_{W}-\mu \operatorname{Id}_{W}\right)=\operatorname{rank}\left(\left(T_{W}-\mu \operatorname{Id}_{W}\right)^{2}\right)$, so by the result of Question 7.1.7(e), T_{W} is diagonalizable.

