
MATH2040 Homework 4

Reference Solution

5.1.2(e). For the following linear operator T on a vector space V and ordered bases β, compute [T ]β , and determine whether β is a
basis consisting of eigenvectors of T .

V = P3(R)
T (a+ bx+ cx2 + dx3) = −d+ (−c+ d)x+ (a+ b− 2c)x2 + (−b+ c− 2d)x3

β =
{
1− x+ x3, 1 + x2, 1, x+ x2

}

Solution:

T (1− x+ x3) = −1 + x− x3 = −1 · (1− x+ x3)

T (1 + x2) = −x− x2 + x3 = 1 · (1− x+ x3)− 1 · (1 + x2)

T (1) = x2 = 1 · (1 + x2)− 1 · 1
T (x+ x2) = −x− x2 = −1 · (x+ x2)

so we have [T ]β =


−1 1 0 0
0 −1 1 0
0 0 −1 0
0 0 0 −1

.

Since 1 + x2, 1 ∈ β are not eigenvectors of T , β is not a basis consisting of eigenvectors of T .

5.1.2(f). For the following linear operator T on a vector space V and ordered bases β, compute [T ]β , and determine whether β is a
basis consisting of eigenvectors of T .

V = M2×2(R)

T

(
a b
c d

)
=

(
−7a− 4b+ 4c− 4d b
−8a− 4b+ 5c− 4d d

)
β =

{ (
1 0
1 0

)
,

(
−1 2
0 0

)
,

(
1 0
2 0

)
,

(
−1 0
0 2

) }

Solution:

T

(
1 0
1 0

)
=

(
−3 0
−3 0

)
= −3 ·

(
1 0
1 0

)
T

(
−1 2
0 0

)
=

(
−1 2
0 0

)
= 1 ·

(
−1 2
0 0

)
T

(
1 0
2 0

)
=

(
1 0
2 0

)
= 1 ·

(
1 0
2 0

)
T

(
−1 0
0 2

)
=

(
−1 0
0 2

)
= 1 ·

(
−1 0
0 2

)

so we have [T ]β =


−3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

Since every vector in β is an eigenvector of T , β is a basis consisting of eigenvectors of T .
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5.1.3(d). For the following matrix A ∈ Mn×n(F),
(a) Determine all the eigenvalues of A.

(b) For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ.

(c) If possible, find a basis for Fn consisting of eigenvectors of A.

(d) If successful in finding such a basis, determine an invertible matrix Q and a diagonal matrix D such that Q−1AQ = D.

A =

2 0 −1
4 1 −4
2 0 −1

 for F = R.

Solution:

(a) The characteristic polynomial of A is p(t) = det(A− tI) = −t3 + 2t2 − t = −t(t− 1)2, so the eigenvalues of A are 0, 1.

(b) • For eigenvalue λ = 0, we have A− λI =

2 0 −1
4 1 −4
2 0 −1

, which has null space N ( A ) = Span

 
1
4
2

 
.

• For eigenvalue λ = 1, we haveA−λI =

1 0 −1
4 0 −4
2 0 −2

, which has null space N ( A−I ) = Span

 
1
0
1

 ,

0
1
0

 
.

(c) Consider β =


1
4
2

 ,

1
0
1

 ,

0
1
0

 . Note that vectors in β are all eigenvectors of A. It is easy to see that
1
0
1

 ,

0
1
0

  is linearly independent. So β is a union of linearly independent subsets of eigenvectors corresponding

to distinct eigenvalues, β is linearly independent. As | β | = 3 = dimFn, β is a basis of Fn.

(d) Let α be the standard basis of Fn = R3. Then Q = [Id]αβ =

1 1 0
4 0 1
2 1 0

 is invertible. Furthermore, by definition of

eigenvector we have D = [T ]β =

0 0 0
0 1 0
0 0 1

 is diagonal, and D = [T ]β =
(
[Id]αβ

)−1

[T ]α[Id]
α
β = Q−1AQ.

Note

The method used to solve for the null space of a matrix is already covered in MATH1030. The steps here are also the typical
approach on diagonalizing a matrix.

5.1.4(e). For the linear operator T on V , find the eigenvalues of T and an ordered basis β for V such that [T ]β is a diagonal matrix.

V = P2(R) and T (f) = xf ′(x) + f(2)x+ f(3)

Solution: Let α be the standard basis of V = P2(R). Then

T (1) = 1 + x

T (x) = 3 + 3x

T (x2) = 9 + 4x+ 2x2

so we have [T ]α =

1 3 9
1 3 4
0 0 2

.

The characteristic polynomial of [T ]α is p(t) = det([T ]α − tI) = −t(t− 2)(t− 4), so the eigenvalues of T are 0, 2, 4.

• For eigenvalue λ = 0, the null space of [T ]α =

1 3 9
1 3 4
0 0 2

 is Span

 
 3
−1
0

 
, so the null space of T is

Span( { 3− x } ).
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• For eigenvalue λ = 2, the null space of [T ]α−2I =

−1 3 9
1 1 4
0 0 0

 is Span

 
 3

13
−4

 
, so the null space of T −2Id

is Span
( {

3 + 13x− 4x2
} )

.

• For eigenvalue λ = 4, the null space of [T ]α − 4I =

−3 3 9
1 −1 4
0 0 −2

 is Span

 
1
1
0

 
, so the null space of

T − 4Id is Span( { 1 + x } ).

Let β =
{
3 − x, 3 + 13x − 4x2, 1 + x

}
. As the vectors in β are eigenvectors of T with distinct eigenvalues, β is linearly

independent. As | β | = 3 = dim(V ), β is a basis of V .

By definition of eigenvectors, we have [T ]β =

0 0 0
0 2 0
0 0 4

, which is diagonal.

Note

Remember to convert the matrix representations back to the vectors after solving for the null spaces.

5.1.10. Let V be a finite-dimensional vector space, and let λ be any scalar.

(a) For any ordered basis β for V , prove that [λIdV ]β = λI.

(b) Compute the characteristic polynomial of λIdV .

(c) Show that λIdV is diagonalizable and has only one eigenvalue.

Solution:

(a) Since V is finite dimensional, we may assume that β = { v1, . . . , vn } for some n ∈ N.

Then for each k ∈ { 1, . . . , n }, we have (λIdV )(vk) = λvk. This implies that ([λIdV ]β)ij =

{
λ if i = j

0 otherwise
for all

i, j ∈ { 1, . . . , n } and so [λIdV ]β = λI.

(b) Let β be an ordered basis of V . By the previous part, the characteristic polynomial of λIdV is p(t) = det([λIdV ]β− tI) =
det(λI − tI) = det((λ− t)I) = (λ− t)n

(c) By the previous part, the characteristic polynomial of λIdV has only one root λ, so λIdV has only one eigenvalue λ.

Let β be an ordered basis of V . Then by part (a), [λIdV ]β = λI, which is diagonal. So λIdV is diagonalizable.

5.1.17. Let T be the linear operator on Mn×n(R) defined by T (A) = AT.

(a) Show that ±1 are the only eigenvalues of T .

(b) Describe the eigenvectors corresponding to each eigenvalue of T .

(c) Find an ordered basis β for M2×2(R) such that [T ]β is a diagonal matrix.

(d) Find an ordered basis β for Mn×n(R) such that [T ]β is a diagonal matrix for n > 2.

Solution: We will assume that n ≥ 2.

(a) Let λ ∈ R be an eigenvalue of T . Then there exists a nonzero matrix A ∈ Mn×n(R) such that AT = T (A) = λA. In
particular, this implies that for all i, j ∈ { 1, . . . , n } we have Aji = (AT)ij = (λA)ij = λAij and so Aij = λAji = λ2Aij ,
Aij(1 − λ2) = 0. Since A is nonzero, there exists i0, j0 ∈ { 1, . . . , n } such that Ai0,j0 ̸= 0, Ai0,j0(1 − λ2) = 0. Thus
1− λ2 = 0, and so λ = 1 or λ = −1.

We now show that ±1 are indeed eigenvalues of T by noting that there exist corresponding eigenvectors:

• For λ = 1, consider I ∈ Mn×n(R), the identity matrix, which is nonzero. Then T (I) = IT = I = λI.

• For λ = −1, consider the matrix A = E12 − E21 ∈ Mn×n(R) where Eij is the matrix where the (i, j)-entry is
1 and all other entries are zero (as defined in Homework 2 Question 1.6.15). Then A is nonzero, and T (A) =
(E12 − E21)

T = E21 − E12 = λ(E12 − E21)
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As for each of these values there is a nonzero vector that witnesses the eigenvalue relation, ±1 are the only eigenvalues
of T .

(b) • For A ∈ Mn×n(R), A ∈ E1 if and only if AT = T (A) = 1 · A = A. So the eigenvectors corresponding to λ = 1 are
the nonzero symmetric matrices in Mn×n(R).

• For A ∈ Mn×n(R), A ∈ E−1 if and only if AT = T (A) = −1 ·A = −A. So the eigenvectors corresponding to λ = −1
are the nonzero skew-symmetric matrices in Mn×n(R).

(c) Let β1 = { E11, E22, E12 + E21 }, β−1 = { E12 − E21 }. It is easy to see that β1 ⊆ E1, β−1 ⊆ E−1, and β1, β2 are
linearly independent subsets in distinct eigenspaces. This implies that β = β1 ∪ β2 = { E11, E22, E12 +E21, E12 −E21 }
is linearly independent. As | β | = 4 = dim(M2×2(R)), β is an ordered basis. Since β consists of eigenvectors of T , [T ]β
is diagonal.

(d) Let β1 = { Eij + Eji : i, j ∈ { 1, . . . , n } , i < j } ∪ { Eii : i ∈ { 1, . . . , n } } ⊆ E1 and β−1 = { Eij − Eji : i, j ∈
{ 1, . . . , n } , i < j } ⊆ E−1. It is easy to verify that β1 and β−1 are linearly independent. Since β1, β−1 are linearly
independent subsets in distinct eigenspaces, β = β1 ∪ β−1 is linearly independent. Also, | β | = | β1 | + | β−1 | =(

n(n−1)
2 + n

)
+ n(n−1)

2 = n2 = dim(Mn×n(R)), β is an ordered basis of Mn×n(R). Since β consists of eigenvectors of

T , [T ]β is diagonal.

Note

For n = 1, the whole proof still works except −1 is no longer an eigenvalue of T , as T degenerates to the identity operator
on Mn×n(R) ∼= R.
We also omit checking that β1 and β−1 are linearly independent as they are self-evident.

5.1.18. Let A,B ∈ Mn×n(C).
(a) Prove that if B is invertible, then there exists a scalar c ∈ C such that A+ cB is not invertible.

(b) Find nonzero 2× 2 matrices A and B such that both A and A+ cB are invertible for all c ∈ C.

Idea:

(a) One way to determine if a matrix is invertible is to check its determinant. So for this question, we want to guarantee
the existence of a complex root c for the equation det(A+ cB) = 0. Note that the structure of this equation is similar
to that of characteristic polynomial, which we have some properties on.

(b) In order to have the desired property, we must have B not being invertible, for otherwise the conclusion of part (a)
applies. It then remains to trial-and-error.

Solution:

(a) Let z ∈ C. As B is invertible, B−1 exists, and we have A + zB = B(B−1AB + zI)B−1. Furthermore, by the
property of determinant, det(A+ zB) = det(B) det(B−1AB + zI) det(B−1) = det(B−1AB + zI) = p(−z), with p(t) =
det(B−1AB − tI) being the characteristic polynomial of B−1AB. Since B−1AB ∈ Mn×n(C), p(t) is a polynomial of
degree n ≥ 1, so by the fundamental theorem of algebra p has a complex root.

Let c ∈ C be such that −c is a root of p. Then 0 = p(−c) = det(A + cB). By the property of determinant, A + cB is
not invertible.

(b) Let A =

(
1 0
0 1

)
, B =

(
0 1
0 0

)
. Then A,B ∈ M2×2(C) and are nonzero. It is easy to see that A is invertible, and for

all c ∈ C we have A + cB =

(
1 c
0 1

)
, which has determinant det(A + cB) = det

(
1 c
0 1

)
= 1 ̸= 0. This implies that

A+ cB is invertible for all c ∈ C.

5.1.20. Let A be an n× n matrix with characteristic polynomial

f(t) = (−1)ntn + an−1t
n−1 + . . .+ a1t+ a0

Prove that f(0) = a0 = det(A). Deduce that A is invertible if and only if a0 ̸= 0.
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Solution: By definition, f(t) = det(A− tI). By the assumption, we have f(0) = a0. So a0 = f(0) = det(A− 0 · I) = det(A).

By the property of determinant, A is invertble if and only if det(A) ̸= 0, which holds if and only if a0 ̸= 0.

5.2.3(a). For the following linear operator T on a vector space V , test T for dagonalizability, and if T is diagonalizable, find a basis
β for V such that [T ]β is a diagonal matrix.

V = P3(R) and T is defined by T (f) = f ′(x) + f ′′(x)

Solution: Let α =
{
1, x, x2, x3

}
be the standard basis. Then

T (1) = 0

T (x) = 1

T (x2) = 2 + 2x

T (x3) = 6x+ 3x2

so [T ]α =


0 1 2 0
0 0 2 6
0 0 0 3
0 0 0 0

.

The characteristic polynomial of T is then p(t) = det([T ]α − tI) = t4, so the only eigenvalue of T is 0, which has algebraic
multiplicity m0 = 4.

The null space of [T ]α is N ( [T ]α ) = Span





1
0
0
0




. This means that the geometric multiplicity of the eigenvalue

λ = 0 is γ0 = 1. As T has only one eigenvalue and m0 ̸= γ0, T is not diagonalizable.

Note

You can also note that T is not the identity map on V but has only one eigenvalue, and that T does not map nonconstant
polynomial to zero by considering their degrees. See also Question 5.1.11.

5.2.3(d). For the following linear operator T on a vector space V , test T for dagonalizability, and if T is diagonalizable, find a basis
β for V such that [T ]β is a diagonal matrix.

V = P2(R) and T is defined by T (f) = f(0) + f(1)(x+ x2)

Solution: Let α be the standard basis of V = P2(R). Then

T (1) = 1 + x+ x2

T (x) = x+ x2

T (x2) = x+ x2

so [T ]α =

1 0 0
1 1 1
1 1 1

.

The characteristic polynomial of T is then p(t) = det([T ]α − tI) = −t3 + 3t2 − 2t = −t(t − 1)(t − 2), so T has 3 distinct
eigenvalues 0, 1, 2. Since dim(V ) = 3, T is diagonalizable.

The eigenspaces of [T ]α and of T on these eigenvalues are, respectively,

• E′
0 = N ( [T ]α ) = Span

 
 0

1
−1

 
, so E0 = Span

( {
x− x2

} )
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• E′
1 = N ( [T ]α − I ) = Span

 
 1
−1
−1

 
, so E1 = Span

( {
1− x− x2

} )

• E′
2 = N ( [T ]α − 2I ) = Span

 
0
1
1

 
, so E2 = Span

( {
x+ x2

} )
Let β =

{
x − x2, 1 − x − x2, x + x2

}
. Since the vectors in β are eigenvectors corresponding to distinct eigenvalues, β is

linearly independent. As | β | = 3 = dim(V ), β is a basis of V . Hence β is a basis such that [T ]β is diagonal.

Note

[T ]β =

0 0 0
0 2 0
0 0 4

.

5.2.3(e). For the following linear operator T on a vector space V , test T for dagonalizability, and if T is diagonalizable, find a basis
β for V such that [T ]β is a diagonal matrix.

V = C2 and T is defined by T (z, w) = (z + iw, iz + w)

Solution: Let α = { (1, 0), (0, 1) } be the standard basis of V = C2. Then

T (1, 0) = (1, i) = 1 · (1, 0) + i · (0, 1)
T (0, 1) = (i, 1) = i · (1, 0) + 1 · (0, 1)

so [T ]α =

(
1 i
i 1

)
.

The characteristic polynomial of T is then p(t) = det([T ]α − tI) = t2 − 2t + 2 = (t − 1 − i)(t − 1 + i), so T has 2 distinct
eigenvalues 1− i, 1 + i. As dim(V ) = 2, T is diagonalizable.

The eigenspaces of [T ]α and of T on these eigenvalues are, respectively,

• E′
1−i = N ( [T ]α − (1− i)I ) = Span

( { (
1
−1

) } )
, so E1−i = Span( { (1,−1) } )

• E′
1+i = N ( [T ]α − (1 + i)I ) = Span

( { (
1
1

) } )
, so E1+i = Span( { (1, 1) } )

Let β = { (1,−1), (1, 1) }. Since the vectors in β are eigenvectors corresponding to distinct eigenvalues, β is linearly
independent. As | β | = 2 = dim(V ), β is a basis of V . Hence β is a basis such that [T ]β is diagonal.

Note

[T ]β =

(
1− i 0
0 1 + i

)
.

5.2.7. For A =

(
1 4
2 3

)
∈ M2×2(R), find an expression for An, where n is an arbitrary positive integer.

Idea: Although we can compute a few powers manually and try to find the pattern, it would be easier if we can simplify the
computation. In particular, if A is diagonal, we have by simple calculation that An is also diagonal with its entries raised to
the same power. The same process still works if A is diagonalizable.

Solution: The characteristic polynomial of A is p(t) = det(A − tI) = t2 − 4t − 5 = (t + 1)(t − 5). So A has 2 eigenvalues
−1, 5. As dim(R2) = 2, A is diagonalizable.
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• For eigenvalue λ = −1, the null space of A− λI =

(
2 4
2 4

)
is Span

( { (
2
−1

) } )
.

• For eigenvalue λ = 5, the null space of A− λI =

(
−4 4
2 −2

)
is Span

( { (
1
1

) } )
.

It is easy to see that

{ (
2
−1

)
,

(
1
1

) }
is linearly independent and so forms a basis of R2. So for Q =

(
2 1
−1 1

)
, we have

Q−1AQ = D with D =

(
−1 0
0 5

)
being diagonal. It is also easy to compute that Q−1 =

(
1/3 −1/3
1/3 2/3

)
.

Then for each n ∈ Z+ we have

An = (QDQ−1)n = QDnQ−1 =

(
2 1
−1 1

)(
(−1)n 0

0 5n

)(
1/3 −1/3
1/3 2/3

)
=

1

3

(
2(−1)n + 5n 2(5n − (−1)n)
5n − (−1)n 2 · 5n + (−1)n

)

Note

Expression also holds for non-positive integer n with an easy proof.

When A is not diagonalizable, we may still use Cayley–Hamilton to simplify the computation, although it would then be
much complicate than the diagonalizable case.

5.2.8. Suppose that A ∈ Mn×n(F) has two distinct eigenvalues, λ1 and λ2, and that dim(Eλ1
) = n−1. Prove that A is diagonalizable.

Idea: To show that A is diagonalizable, we can check if the algebraic multiplicities of its eigenvalues are the same as the
geometric multiplicities. Since dim(Eλ1

) = n−1 is almost the same as dim(Fn) = n, there is little room for other eigenvalues.

Solution: Let γA(λ),mA(λ) are the geometric and algebraic multiplicity of an eigenvalue λ of A respectively.

Trivially, 1 ≤ dim(Eλ2
), so n = (n− 1) + 1 ≤ dim(Eλ1

) + dim(Eλ2
) = γA(λ1) + γA(λ2) ≤ mA(λ1) +mA(λ2) ≤ dim(Fn) = n.

This implies that all inequalities are equalities, and so γA(λ1) = mA(λ1), γA(λ2) = mA(λ2), and mA(λ1) +mA(λ2) = n.

As mA(λ) ≥ 1 for every eigenvalues of A and the algebraic multiplicities of the eigenvalues of A sum to dim(Fn) = n, we can
see that λ1, λ2 are the only eigenvalues of A. Since for each eigenvalue λ of A we have mA(λ) = γA(λ), A is diagonalizable.

5.2.13. Let A ∈ Mn×n(F). For any eigenvalue λ of A and AT, let Eλ and E′
λ denote the corresponding eigenspaces for A and AT,

respectively.

(a) Show by way of example that for a given common eigenvalue, these two eigenspaces need not be the same.

(b) Prove that for any eigenvalue λ, dim(Eλ) = dim(E′
λ).

(c) Prove that if A is diagonalizable, then AT is also digonalizable.

Solution:

(a) Let A =

(
1 1
0 1

)
∈ M2×2(R). Then AT =

(
1 0
1 1

)
. It is easy to see that A and AT have a unique eigenvalue λ = 1, and

E1 = Span

( { (
1
0

) } )
̸= Span

( { (
0
1

) } )
= E′

1.

(b) By a theorem in MATH1030, we have rank(A−λI) = rank((A−λI)T) = rank(AT−λI), so dim(Eλ) = nullity(A−λI) =
n− rank(A− λI) = n− nullity(AT − λI) = nullity(AT − λI) = dim(E′

λ).

(c) Suppose A is diagonalizable. Then A has full eigenvalues, and for each eigenvalue λ we have γA(λ) = mA(λ). Since
det(A− tI) = det(AT − tI) for all t ∈ F, A and AT have the same characteristic polynomial. This implies that AT also
has full eigenvalues, and mA(λ) = mAT(λ) for each eigenvalue λ.

By the previous part, γA(λ) = dim(Eλ) = dim(E′
λ) = γAT(λ) for each eigenvalue λ. So γAT(λ) = mAT(λ) for each

eigenvalue λ. This implies that AT is diagonalizable.
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Note

For part (b), we can also show that rank(A) = rank(AT) without going through the theorem from MATH1030, but that may
require using concepts from later lectures (namely inner product and norm). Please send us an email if you have a good
proof without using them.

5.2.18. (a) Prove that if T and U are simultaneously diagonalizable operators, then T and U commute.

(b) Show that if A and B are simultaneously diagonalizable matrices, then A and B commute.

Solution: We assume that dim(V ) = n, as in the definition for simultaneously diagonalizability.

(a) Since T,U are simultaneously diagonalizable, there exists an ordered basis β such that [T ]β and [U ]β are both diagonal.

We may assume that the matrices are [T ]β =

d1
. . .

dn

, [U ]β =

f1
. . .

fn

. Then [TU ]β = [T ]β [U ]β =

d1f1
. . .

dnfn

 =

f1d1
. . .

fndn

 = [U ]β [T ]β = [UT ]β . This implies that TU = UT , and so T,U commute.

(b) Let α = { e1, . . . , en } be the standard basis of Fn. Then [LA]α = A, [LB ]α = B. Since A,B are simultaneously
diagonalizable, there exists invertible Q ∈ Mn×n(F) such that Q−1AQ and Q−1BQ are both diagonal.

Let β = { Qe1, . . . , Qen }. Since Q is invertible, β is an ordered basis of Fn, and [Id]αβ = Q. So [LA]β = [Id]βα[LA]β [Id]
α
β =

Q−1AQ and [LB ]β = Q−1BQ are both diagonal. This implies that LA, LB are simultaneously diagonalizable operators on
Fn, and thus by the previous part they commute. Hence AB = [LA]α[LB ]α = [LALB ]α = [LBLA]α = [LB ]α[LA]α = BA.
So A,B commute.

Note

You can also work on the matrices directly in the same way part (a) is done rather than going through LA and LB .

Practice Problems

5.1.1. Label the following statements as true or false.

(a) Every linear operator on an n-dimensional vector space has n distinct eigenvalues.

(b) If a real matrix has one eigenvector, then it has an infinite number of eigenvectors.

(c) There exists a square matrix with no eigenvectors.

(d) Eigenvalues must be nonzero scalars.

(e) Any two eigenvectors are linearly independent.

(f) The sum of two eigenvalues of a linear operator T is also an eigenvalue of T .

(g) Linear operators on infinite-dimensional vector spaces never have eigenvalues.

(h) An n× n matrix A with entries from a field F is similar to a diagonal matrix if and only if there is a basis for Fn consisting
of eigenvectors of A.

(i) Similar matrices always have the same eigenvalues.

(j) Similar matrices always have the same eigenvectors.

(k) The sum of two eigenvectors of an operator T is always an eigenvector of T .

Solution:

(a) False

(b) True

(c) True

Page 8



(d) False

(e) False

(f) False

(g) False

(h) True

(i) True

(j) False

(k) False

5.1.6. Let T be a linear operator on a finite-dimensional vector space V , and let β be an ordered basis for V . Prove that λ is an
eigenvalue of T if and only if λ is an eigenvalue of [T ]β .

Solution: Let λ ∈ F be an eigenvalue of T . Then there exists a nonzero vector v ∈ V such that Tv = λv. So [T ]β [v]β =
[Tv]β = [λv]β = λ[v]β . As v ̸= 0V , [v]β ̸= 0Fn . So λ is an eigenvalue of [T ]β (as witnessed by [v]β).

Let λ ∈ F be an eigenvalue of [T ]β . Then there exists a nonzero x ∈ Fn such that [T ]βx = L[T ]βx = λx. Since V is

finite-dimensional, we may assume that β = { v1, . . . , vn } for some n ∈ N. Let v =
∑n

i=1 xivi where x =
(
x1 . . . xn

)T
.

Then v ∈ V and [v]β = x. This implies that [Tv]β = [T ]β [v]β = [T ]βx = λx = []λv]β , so Tv = λv. As x ̸= 0Fn , v ̸= 0V .
Hence λ is an eigenvalue of T (as witnessed by v).

Hence λ is an eigenvalue of T if and only if it is an eigenvalue of [T ]β .

5.1.7. Let T be a linear operator on a finite-dimensional vector space V .

(a) Prove that if β and γ are two ordered bases for V , then det([T ]β) = det([T ]γ).

(b) Prove that T is invertible if and only if det(T ) ̸= 0.

(c) Prove that if T is invertible, then det(T−1) = [det(T )]
−1

.

(d) Prove that if U is also a linear operator on V , then det(TU) = det(T ) det(U).

(e) Prove that det(T − λIdV ) = det([T ]β − λI) for any scalar λ and any ordered basis β for V .

Solution:

(a) Let Q = [IdV ]
γ
β . Then Q is invertible. So by the property of determinant, det([T ]β) = det([IdV ]

β
γ [T ]γ [IdV ]

γ
β) =

det(Q−1[T ]γQ) = det(Q)
−1

det([T ]γ) det(Q) = det([T ]γ)

(b) Let β be an ordered basis of V . Then det(T ) = det([T ]β). By the property of matrix representation, T is invertible if
and only if [T ]β is, which holds if and only if det([T ]β) ̸= 0. So T is invertble if and only if det(T ) ̸= 0.

(c) Suppose T is invertible. Then T−1 exists and TT−1 = IdV . Let β be an ordered basis. Then 1 = det([IdV ]β) =

det([TT−1]β) = det([T ]β [T
−1]β) = det([T ]β) det([T

−1]β) = det(T ) det(T−1). So det(T−1) = [det(T )]
−1

.

(d) Let β be an ordered basis of V . Then det(TU) = det([TU ]β) = det([T ]β [U ]β) = det([T ]β) det([U ]β) = det(T ) det(U).

(e) Let λ ∈ F and β be an ordered basis for V . Then [T − λIdV ]β = [T ]β − [λIdV ]β = [T ]β − λ[IdV ]β = [T ]β − λI. Hence
det(T − λIdV ) = det([T − λIdV ]β) = det([T ]β − λI).

5.1.8. (a) Prove that a linear operator T on a finite-dimensional vector space is invertible if and only if zero is not an eigenvalue of
T .

(b) Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue of T if and only if λ−1 is an eigenvalue of T−1.

(c) State and prove results analogous to (a) and (b) for matrices.

Solution:
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(a) Suppose T is invertible. Then for all v ̸= 0 we have Tv ̸= 0 = 0 · v. This implies that 0 is not an eigenvalue of T .

Suppose T is not invertible. Since the vector space V is finite-dimensional, this implies that T is not one-to-one. So
there exists nonzero v ∈ N ( T ), or equivalently Tv = 0 = 0 · v. Hence 0 is an eigenvalue of T (with an eigenvector v).

Thus T is invertible if and only if 0 is not an eigenvalue of T .

(b) Suppose λ is an eigenvalue of T . Since T is invertible, λ ̸= 0. Also, by the definition of eigenvalue, there exists nonzero
v ∈ V such that Tv = λv, so T−1v = T−1(λ−1λv) = λ−1T−1(Tv) = λ−1v. Since v is nonzero, this implies that λ−1 is
an eigenvalue of T−1.

Suppose λ−1 is an eigenvalue of T−1. Since T is invertible, T−1 is also invertible. By the previous part, λ−1 is nonzero.

By the previous proof, λ =
(
λ−1

)−1
is an eigenvalue of

(
T−1

)−1
= T .

So λ is an eigenvalue of T if and only if λ−1 is an eigenvalue of T−1.

Note

See also the spectral mapping theorem.

(c) The analogous results are:

• A matrix A ∈ Mn×n(F) is invertible if and only if 0 is not an eigenvalue of A.

• If A ∈ Mn×n(F) is invertible, then λ ∈ F is an eigenvalue of A if and only if λ−1 is an eigenvalue of A−1.

The proofs are easy corollaries of the previous parts: let α be the standard ordered basis of Fn. Then

• A is invertible if and only if LA is invertible, which by part (a) holds if and only if 0 is not an eigenvalue of LA,
which by Question 5.1.6 holds if and only if 0 is not an eigenvalue of A = [LA]α.

• Suppose A is invertible. Then by Question 5.1.6, λ is an eigenvalue of A = [LA]α if and only if it is an eigenvalue
of LA, which by part (b) holds if and only if λ−1 is an eigenvalue of Lα

−1, which again by Question 5.1.6 holds if

and only if λ−1 is an eigenvalue of [LA
−1]α = ([LA])

−1
= A−1.

5.1.11. (a) Prove that if a square matrix A is similar to a scalar matrix λI, then A = λI.

(b) Show that a diagonalizable matrix having only one eigenvalue is a scalar matrix.

Solution:

(a) Suppose A ∈ Mn×n(F) is similar to λI for some scalar λ ∈ F. Then there exists invertible B ∈ Mn×n(F) such that
B−1AB = λI, so A = B(λI)B−1 = λBIB−1 = λI.

(b) Suppose A ∈ Mn×n(F) is a diagonalizable matrix which has only one eigenvalue. Then there exists invertible Q ∈
Mn×n(F) such that D = Q−1AQ is diagonal. Let α = { e1, . . . , en } be the standard ordered basis of Fn. Since D is
diagonal, we have Dei = Diiei with ei ̸= 0, so D has n eigenvalues (counted with multiplicity) D11, . . . , Dnn. Since A is
similar to D, they have the same eigenvalues. Since A has only one eigenvalue, this implies that D11 = . . . = Dnn = λ
for some λ ∈ F. So D = λI is a scalar matrix. In particular, A is similar to a scalar matrix, so by part (a) A itself is a
scalar matrix.

5.1.14. For any square matrix A, prove that A and AT have the same characteristic polynomial (and hence the same eigenvalues).

Solution: Assume that A ∈ Mn×n(F).
By the property of characteristic polynomial, det(A− tI),det((A− tI)T = det(AT − tI) are elements in the polynomial ring
F[t] in t. Let K = Frac(F[t]), the field of fractions of F[t]. Then K ⊇ F[t] ⊇ F, so A− tI, AT − tI ∈ Mn×n(K). By Theorem
4.8 in textbook, det(A−tI) = det(AT−tI) in K. As K ⊇ F[t] and det(A−tI),det(AT−tI) ∈ F[t], det(A−tI) = det(AT−tI)
in F[t]. This implies that A and AT have the same characteristic polynomial.

As eigenvalues are exactly the roots of the characteristic polynomial, A and AT have the same eigenvalues.

Note

Note that we do not have information on the scalar field.
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5.1.16. (a) Prove that similar matrices have the same trace.

(b) How would you define the trace of a linear operator on a finite-dimensional vector space? Justify that your definition is
well-defined.

Solution:

(a) Let A,B ∈ Mn×n(F) be similar. Then there exists invertible Q ∈ Mn×n(F) such that B = Q−1AQ. Then by the
property of trace, we have tr(B) = tr(Q−1AQ) = tr(AQQ−1) = tr(A)

(b) For a linear operator T on a finite dimensional vector space V define tr(T ) = tr([T ]β) where β is an ordered basis of V .

We now show that this definition is well-defined. Let α, β be ordered basis of V . Then [T ]α = [Id]αβ [T ]β [Id]
β
α =(

[Id]βα
)−1

[T ]β [Id]
β
α, so [T ]α and [T ]β are similar matrices. By the previous part, tr([T ]α) = tr([T ]β). Hence tr(T ) is

independent of the choice of the ordered basis, and thus is well-defined.

5.1.21. Let A and f(t) be as in Question 5.1.20.

(a) Prove that f(t) = (A11 − t)(A22 − t) . . . (Ann − t) + q(t), where q(t) is a polynomial of degree at most n− 2.

(b) Show that tr(A) = (−1)n−1an−1.

Solution:

(a) We will use the following lemma:

Let B ∈ Mn×n(F[t]) be such that for some k ≤ n2 there are at most k entries of B are polynomials of degree
1 and all other entries are scalars. Then det(B) is a polynomial of degree at most k.

To show the proposition, we will use induction on the size of the matrix n.

For the case n = 1, we have A =
(
A11

)
for some scalar A11 ∈ F. Then f(t) = det(A− tI) = A11 − t+ q(t) with q(t) = 0

is a polynomial of degree at most −1.

Suppose for some integer k ∈ Z+ the proposition holds for all matrices of size k × k, and A ∈ M(k+1)×(k+1)(F).

Then f(t) = det(A − tI) = det


A11 − t ∗ ∗

∗ A22 − t ∗
. . .

Ak+1,1 Ak+1,2 . . . Ak+1,k+1 − t

. Expanding along the last row, we have

f(t) =
∑k

i=1(−1)k+1+iAk+1,iMk+1,i+(−1)2(k+1)(Ak+1,k+1− t) det


A11 − t ∗ ∗

∗ A22 − t ∗
. . .

Ak+1,1 Ak+1,2 . . . Akk − t

 where Mij is the

minor of A−tI at (i, j). By induction assumption, det


A11 − t ∗ ∗

∗ A22 − t ∗
. . .

Ak+1,1 Ak+1,2 . . . Akk − t

 = (A11−t) . . . (Akk−t)+q′(t)

where q′ is a polynomial of degree at most k − 2. Also, as each of the submatrices contains only k + 1 − 2 = k − 1
entries that are polynomials of degree 1, using the lemma we can see that each of Mk+1,i for i ∈ { 1, . . . , k } is
a polynomial of degree at most k − 1. This implies that f(t) = (A11 − t) . . . (Ak+1,k+1 − t) + q(t) where q(t) =

(Ak+1,k+1 − t)q′(t) +
∑k

i=1(−1)k+1+iAk+1,iMk+1,i is a polynomial of degree at most k − 1.

By induction, the proposition holds for all n ∈ Z+.

It remains to show the lemma. To do so, we will again use induction on n. It is easy to see that the proposition holds
for the base case n = 1.

Suppose for some integer m ∈ Z+ the proposition holds for all matrices of size m×m, and B ∈ M(m+1)×(m+1)(F[t]) has
k entries of polynomial of degree 1. Then det(B) =

∑m+1
i=1 (−1)1+iB1iM1i where Mij = det(B−i,−j) is the minor of B

at (i, j) and B−i,−j ∈ Mm×m(F[t]) is the submatrix obtained after removing ith row and jth column from B. Then for
each i ∈ { 1, . . . ,m+ 1 },

• If B1i is a scalar, then B−1,−i contains at most min(k,m2) entries of polynomial of degree 1. By induction
assumption, M1j = det(B−1,−i) is a polynomial of degree at most min(k,m2) ≤ k, and so (−1)1+iB1iM1i is a
polynomial of degree at most k.
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• If B1i is a polynomial of degree 1, then then B−1,−i contains at most min(k−1,m2) entries of polynomial of degree
1. By induction assumption, M1j = det(B−1,−i) is a polynomial of degree at most min(k − 1,m2) ≤ k − 1, and so
(−1)1+iB1iM1i is a polynomial of degree at most k.

Hence det(B) is a sum of polynomials of degree at most k and so is a polynomial of degree at most k.

As k is arbitrary, by induction the lemma holds for all n ∈ Z+.

(b) Let p(t) = (A11− t) . . . (Ann− t). By Vieta’s formula, we have that p has leading coefficient (−1)n, and (−1)n+1 tr(A) =
−(−1)n

∑n
i=1 Aii is the coefficient of tn−1 term in the polynomial p. Since deg q ≤ n − 2, it is also the coefficient

of tn−1 term in the polynomial f(t) = p(t) + q(t) = (A11 − t) . . . (Ann − t) + q(t) = (−1)ntn + an−1t
n−1 + . . .. So

(−1)n+1 tr(A) = an−1, or tr(A) = (−1)n−1an−1.

Note

The bound k used in the lemma in part (a) is very loose but is already sufficient for our use. You can also refine and generalize
the lemma yourself.

5.2.1. Label the following statements as true or false.

(a) Any linear operator on an n-dimensional vector space that has fewer than n distinct eigenvalues is not diagonalizable.

(b) Two distinct eigenvectors corresponding to the same eigenvalue are always linearly dependent.

(c) If A is an eigenvalue of a linear operator T , then each vector in Eλ is an eigenvector of T .

(d) If λ1 and λ2 are distinct eigenvalues of a linear operator T , then Eλ1
∩ Eλ2

= {0}.
(e) Let A ∈ Mn×n(F) and β = { v1, v2, . . . , vn } be an ordered basis for Fn consisting of eigenvectors of A. If Q is the n × n

matrix whose jth column is vj (1 ≤ j ≤ n), then Q−1AQ is a diagonal matrix.

(f) A linear operator T on a finite-dimensional vector space is diagonalizable if and only if the multiplicity of each eigenvalue λ
equals the dimension of Eλ

(g) Every diagonalizable linear operator on a nonzero vector space has at least one eigenvalue.

(h) If a vector space is the direct sum of subspaces W1,W2, . . . ,Wk, then Wi ∩Wj = {0} for i ̸= j.

(i) If V =
∑k

i=1 Wi and Wi ∩Wj = {0} for i ̸= j, then V = W1 ⊕W2 ⊕ . . .⊕Wk.

Solution:

(a) False

(b) False

(c) False. Note that 0 ∈ Eλ

(d) True

(e) True

(f) True

(g) True

(h) True. See also the next statement

(i) False. Note that a stronger condition is needed

5.2.10. Let T be a linear operator on a finite-dimensional vector space V with the distinct eigenvalues λ1, λ2, . . . , λk and corresponding
multiplicitiesm1,m2, . . . ,mk. Suppose that β is a basis for V such that [T ]β is an upper triangular matrix. Prove that the diagonal
entries of [T ]β are λ1, λ2, . . . , λk and that each λi occurs mi times (1 ≤ i ≤ k).

Solution: Assume that dim(V ) = | β | = n.

We evaluate the characteristic polynomial of T using the basis β. By definition, the characteristic polynomial is p(t) =
det([T ]β − tI). Since [T ]β is upper triangular, so is [T ]β − tI. Hence det([T ]β − tI) =

∏n
i=1([T ]β − tI)ii =

∏n
i=1(([T ]β)ii − t).

By assumption, the roots of p(t) are λ1, . . . , λk with multiplicities m1, . . . ,mk, so p(t) is a multiple of
∏k

i=1(t−λi)
mi . Hence
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∏n
i=1(([T ]β)ii − t) = p(t) = q(t)

∏k
i=1(t − λi)

mi . By assumption,
∑k

i=1 mi = n, so n = deg
∏n

i=1(([T ]β)ii − t) = deg q +

deg
∏k

i=1(t− λi)
mi = deg q+

∑k
i=1 m

i = n+deg q, deg q = 0, and thus q is a scalar. This implies that ([T ]β)11, . . . , ([T ]β)nn
are λ1, . . . , λk each occurs m1, . . . ,mk times respectively.

5.2.11. Let A be an n × n matrix that is similar to an upper triangular matrix and has the distinct eigenvalues λ1, λ2, . . . , λk with
corresponding multiplicities m1,m2, . . . ,mk. Prove the following statements.

(a) tr(A) =
∑k

i=1 miλi

(b) det(A) = (λ1)
m1(λ2)

m2 . . . (λk)
mk

Solution: Let Q ∈ Mn×n(R) be invertible such that Q−1AQ is upper triangular. Let α = { e1, . . . , en } be the standard
basis of Fn, and β = { Qe1, . . . , Qen }. Then β is a basis, [LA]α = A, [Id]αβ = Q, and so [T ]β = Q−1AQ is upper triangular.
By Question 5.2.10, the diagonal entries of [T ]β are λ1, . . . , λk each occurs m1, . . . ,mk times respectively.

(a) By the result of Question 5.1.16, tr(A) = tr([T ]β) =
∑n

i=1([T ]β)ii =
∑k

i=1 miλi.

(b) By the property of determinant, det(A) = det([T ]β) =
∏n

i=1([T ]β)ii =
∏k

i=1 λ
mi
i .

5.2.12. Let T be an invertible linear operator on a finite-dimensional vector space V .

(a) Prove that the eigenspace of T corresponding to λ is the same as the eigenspace of T−1 corresponding to λ−1.

(b) Prove that if T is diagonalizable, then T−1 is diagonalizable.

Solution:

(a) Let λ be an eigenvalue of T , and v ∈ Eλ(T ) be in the eigenspace of T corresponding to the eigenvalue λ. Then
T (v) = λv, so T−1(v) = λ−1T−1(λv) = λ−1T−1(Tv) = λ−1v. This implies that v ∈ Eλ−1(T−1). As v is arbitrary,
Eλ(T ) ⊆ Eλ−1(T−1).

Since T is invertible, T−1 is also invertble with
(
T−1

)−1
= T . So by the same argument and the result of Question

5.1.8, we have Eλ−1(T−1) ⊆ E(λ−1)−1(
(
T−1

)−1
) = Eλ(T ). This implies that Eλ(T ) = Eλ−1(T−1).

Thus the eigenspace of T corresponding to λ is the same as the eigenspace of T−1 corresponding to λ−1

(b) Suppose T is diagonalizable. Let λ1, . . . , λk ∈ F be all of the distinct eigenvalues of T . Then γT (λi) = mT (λi) for each i,

and
∑k

i=1 mT (λi) = dim(V ). By part (b) of Question 5.1.8, the eigenvalues of T−1 are exactly λ1
−1, . . . , λk

−1. By part

(a), Eλ(T ) = Eλ−1(T−1), so γT (λ) = γT−1(λ−1). This implies that dim(V ) ≥
∑k

i=1 mT−1(λi
−1) ≥

∑k
i=1 γT−1(λi

−1) =∑k
i=1 γT (λi) =

∑k
i=1 mT (λi) = dim(V ). Hence mT−1(λi

−1) = γT−1(λi
−1) for each i. So T−1 is invertible.

5.2.17. (a) Prove that if T and U are simultaneously diagonalizable linear operators on a finite-dimensional vector space V , then
the matrices [T ]β and [U ]β are simultaneously diagonalizable for any ordered basis β.

(b) Prove that if A and B are simultaneously diagonalizable matrices, then LA and LB are simultaneously diagonalizable linear
operators.

Solution:

(a) Since T,U are simultaneously diagonalizable, there exists an ordered basis α such that [T ]α and [U ]α are diagonal.

Let β be an ordered basis. Then [T ]β = [Id]βα[T ]α[Id]
α
β = Q[T ]αQ

−1 and [U ]β = Q[U ]αQ
−1 with Q = [Id]βα. By

assumption, [T ]α = Q−1[T ]βQ and [U ]α = Q−1[U ]βQ are both diagonal, so by definition [T ]β and [U ]β are simultaneously
diagonalizable.

(b) Suppose A,B are simultaneously diagonalizable. Then there exists invertible matrix Q such that Q−1AQ and Q−1BQ
are both diagonal.

Let α be the standard basis. Then [LA]α = A and [LB ]α = B. Let β = { Qe1, . . . , Qen }. Since Q is invertible, β is a
basis, and [Id]αβ = Q. So by assumption, Q−1AQ = [Id]βα[LA]α[Id]

α
β = [Id ◦ LA ◦ Id]β = [LA]β and Q−1BQ = [LB ]β are

both diagonal. By definition, LA and LB are simultaneously diagonalizable.
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