Topic#7

Matrix representation of a linear transformation

<u>Def.</u> V: finite-dimensional v.s. over \mathbb{F} with dim V = n

$$\beta = \{v_1, v_2, \cdots, v_n\}$$
: an ordered basis for V

Let $v \in V$, then $\exists ! a_1, \dots, a_n \in \mathbb{F}$, s.t. $v = \sum_{i=1}^n a_i v_i$.

If the order of vectors in β is specified, β is called an ordered basis for V.

Thus, associated with an ordered basis β for V, we may define

$$[\cdot]_{\beta}:V\to\mathbb{F}^n$$

such that

$$v\mapsto [v]_{eta}\stackrel{def}{=}egin{pmatrix} a_1\ a_2\ dots\ a_n \end{pmatrix}\in\mathbb{F}^n, ext{ (well-defined)}$$

and $[v]_{\beta}$ called the **coordinate vector** of v relative to o.b. β

Remarks:

- 1°. $[\cdot]_{\beta}$ is defined in terms of the o.b. β , so different β 's give different $[\cdot]_{\beta}$'s
- **e.g.:** $V = F^3$: $\beta = \{e_1, e_2, e_3\}$ the standard o.b.

$$\gamma = \{e_2, e_1, e_3\}$$
 o.b.

- $[\cdot]_{\beta} \neq [\cdot]_{\gamma}$. They are different ordered basis
- 2° $[\cdot]_{\beta}: V \to \mathbb{F}^n$ with $n = \dim(V)$ is linear, i.e. $[\cdot]_{\beta} \in \mathcal{L}(V, \mathbb{F}^n)$ (note, to show 'bijection' in the future).

$$\underline{\mathsf{Def.}}\ T \in \mathcal{L}(V,W)$$
$$\dim(V) = n, \beta = \{v\}$$

 $\dim(V) = n, \beta = \{v_1, \dots, v_n\}$: o.b. for V $\dim(W) = m, \gamma = \{w_1, \dots, w_m\}$: o.b. for W

$$[T(v_1)]_{\gamma} = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, [T(v_2)]_{\gamma} = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \cdots, [T(v_n)]_{\gamma} = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix},$$

$$\in \mathbb{F}^m \text{ are } \gamma\text{-coordinate of } T(v_1) \cdots T(v_n), \text{ or equivalently}$$

 $T(v_i) = \sum_{i=1}^{m} a_{ii} w_i, \quad j = 1, 2, \dots, n$

where
$$v_i$$
 is the j^{th} vector in β and a_{ij} are unique. Then,

is well-defined, and called
$$[T]^{\gamma}_{\beta}$$
 the matrix representation

 $T \in \mathcal{L}(V, W) \mapsto [T]_{\beta}^{\gamma} \stackrel{def}{=} (a_{ij})_{m \times n} = ([T(v_1)]_{\gamma}, \cdots, [T(v_n)]_{\gamma})$

of T in the ordered bases β and γ . Convention: $[T]_{\beta} = [T]_{\beta}^{\beta}$ if $V = W, \beta = \gamma$

Examples:

(1)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$

 $(a_1, a_2) \mapsto T(a_1, a_2) = (a_1 + 3a_2, 0, 2a_1 - 4a_2).$

$$\mathbb{R}^2$$
: $\beta = \{e_1, e_2\}$, s.o.b.

$$\mathbb{R}^3$$
: $\gamma = \{e_1, e_2, e_3\}$, s.o.b.

$$T(e_1) = T(1,0) = (1,0,2) = 1e_1 + 0e_2 + 2e_3$$

 $T(e_2) = T(0,1) = (3,0,-4) = 3e_1 + 0e_2 + (-4)e_3$

$$\therefore [T]_{\beta}^{\gamma} = ([T(e_1)]_{\gamma}, [T(e_2)]_{\gamma}) = \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 2 & -4 \end{pmatrix}$$

If
$$\gamma' = \{e_3, e_2, e_1\}$$
, then

$$[T]_{eta}^{\gamma'} = ([T(e_1)]_{\gamma'}, [T(e_2)]_{\gamma'}) = \begin{pmatrix} 2 - 4 \\ 0 & 0 \\ 1 & 3 \end{pmatrix}.$$

$$(2) \ T : P_{3}(\mathbb{R}) \to P_{2}(\mathbb{R})$$

$$f \in P_{3}(\mathbb{R}) \mapsto T(f) \in P_{2}(\mathbb{R}) : T(f(x)) = f'(x)$$

$$T \in \mathcal{L}(P_{3}(\mathbb{R}), P_{2}(\mathbb{R}).$$

$$P_{3}(\mathbb{R}) : \beta = \{1, x, x^{2}, x^{3}\} \text{ s.o.b.}$$

$$P_{2}(\mathbb{R}) : \beta = \{1, x, x^{2}\} \text{ s.o.b.}$$

$$T(1) = 0 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^{2}$$

$$T(x) = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^{2}$$

$$T(x^{2}) = 2x = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^{2}$$

$$T(x^{3}) = 3x^{2} = 0 \cdot 1 + 0 \cdot x + 3 \cdot x^{2}$$

$$\therefore [T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

6/16

<u>Def.</u> Let $T, U \in \mathcal{L}(V, W)$, and $a \in \mathbb{F}$. We equip $\mathcal{L}(V, W)$ with "+" and "·" as follows:

$$T + U : V \to W$$

 $x \in V \mapsto (T + U)(x) \stackrel{def}{=} T(x) + U(x) \in W$
 $aT : V \to W$
 $x \in V \mapsto (aT)(x) \stackrel{def}{=} aT(x)$

<u>Prop.</u> 1° . $T+U, aT\in \mathcal{L}(V,W)$ (i.e. $\mathcal{L}(V,W)$ is closed under "+" and "·")

2°. The set $\mathcal{L}(V,W)$ equiped with "+" and "·" as above is a v.s. over $\mathbb{F}.$

Pf.: Use def. $(+, \cdot \text{ are well-defined}, \& (VS1)-(VS8) \text{ satisfied}).$

Prop.
$$T, U \in \mathcal{L}(V, W)$$
.

$$V \xrightarrow{T} W$$

$$\downarrow [:]_{\beta}, \dim(V) = n \qquad \downarrow [:]_{\gamma}, \dim(W) = m$$

$$\mathbb{F}^{n} \xrightarrow{A = [T]_{\beta}^{\gamma}} \mathbb{F}^{m}$$

Then,

$$[T+U]_{\beta}^{\gamma} = [T]_{\beta}^{\gamma} + [U]_{\beta}^{\gamma},$$

$$[aT]_{\beta}^{\gamma} = a[T]_{\beta}^{\gamma}, \quad a \in \mathbb{F}.$$

Pf.:

$$(T+U)(v_j) \stackrel{1 \le j \le n}{=} T(v_j) + U(v_j) = \sum_{i=1}^m a_{ij} w_i + \sum_{i=1}^m b_{ij} w_i$$

$$= \sum_{i=1}^m (a_{ij} + b_{ij}) w_i$$

$$\therefore ([T+U]^{\gamma}_{\beta})_{ij} = \mathsf{a}_{ij} + \mathsf{b}_{ij} = ([T]^{\gamma}_{\beta})_{ij} + ([U]^{\gamma}_{\beta})_{ij}$$

for $1 \le i \le n, 1 \le j \le m$.

$$\therefore [T+U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$$

Thm. $T \in \mathcal{L}(V, W)$, $T \in \mathcal{L}(V, W)$, α, β, γ are o.b. for V, W, Z respectively.

$$V \xrightarrow{T} W \xrightarrow{U} Z$$

$$\downarrow [\cdot]_{\alpha} \qquad \qquad \downarrow [\cdot]_{\beta} \qquad \qquad \downarrow [\cdot]_{\gamma}$$

$$\mathbb{F}^{\dim(V)} \xrightarrow{[T]_{\alpha}^{\beta}} \mathbb{F}^{\dim(W)} \xrightarrow{[U]_{\beta}^{\gamma}} \mathbb{F}^{\dim(Z)}$$

Then,

1°. $UT \in \mathcal{L}(V, W)$, i.e. UT is linear. where $UT(x) \stackrel{\forall x \in V}{=} U(T(x))$.

 2° .

$$\underbrace{[UT]_{\alpha}^{\gamma}}_{\sharp\gamma\times\sharp\alpha} = \underbrace{[U]_{\beta}^{\gamma}}_{\sharp\gamma\times\sharp\beta} \underbrace{[T]_{\alpha}^{\beta}}_{\sharp\beta\times\sharp\alpha}.$$

Proof.

 1° . $UT: V \rightarrow Z$ is well-defined.

UT is linear. Indeed,
$$x, y \in V, a \in \mathbb{F}$$
,

$$UT(x + y) = U(T(x) + T(y))$$

= $U(T(x)) + U(T(y)) = UT(x) + UT(y),$

$$UT(ax) = U(T(ax)) = U(aT(x))$$
$$= aU(T(x)) = aUT(x).$$

2°.

$$V \xrightarrow{T} W \xrightarrow{U} Z$$

$$\downarrow [\cdot]_{\alpha} \qquad \downarrow [\cdot]_{\beta} \qquad \downarrow [\cdot]_{\gamma}$$

$$\downarrow [\cdot]_{\alpha} \qquad \downarrow [\cdot]_{\beta} \qquad \downarrow [\cdot]_{\gamma}$$

$$\downarrow [\cdot]_{\gamma} \qquad \downarrow [\cdot]_{\gamma}$$

$$\downarrow [\cdot]_{\gamma} \qquad \downarrow [\cdot]_{\gamma}$$

$$\downarrow [\cdot]_{\gamma} \qquad \downarrow [\cdot]_{\gamma}$$

$$\alpha = \{v_1, \dots, v_n\}$$
 o.b. for V , $\beta = \{w_1, \dots, w_m\}$ o.b. for W

$$\gamma = \{z_1, \dots, z_p\} \text{ o.b. for } Z$$

$$[U]_{\beta}^{\gamma} = A = [a_{ik}]_{p \times m} : U(w_k) = \sum_{i=1}^{p} a_{ik} z_i, 1 \le k \le m,$$

$$[T]_{\alpha}^{\beta} = B = [b_{kj}]_{m \times n} : T(v_j) = \sum_{k=1}^{m} b_{kj} w_k, 1 \le j \le n.$$

$$\therefore UT(v_{j}) \stackrel{j=1,...,n}{=} U(\sum_{k=1}^{m} b_{kj}w_{k}) = \sum_{k=1}^{m} b_{kj}U(w_{k})$$

$$= \sum_{k=1}^{m} b_{kj}(\sum_{k=1}^{p} a_{ik}z_{i}) = \sum_{k=1}^{p} (\sum_{k=1}^{m} a_{ik}b_{kj})z_{i}$$

$$\therefore ([UT]_{\alpha}^{\gamma})_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj} = (AB)_{ij}, i = 1, ..., p, j = 1, ..., n.$$

namely,
$$[UT]^{\gamma}_{\alpha} = AB = [U]^{\gamma}_{\beta}[T]^{\beta}_{\alpha}$$
.

$$\underline{\mathbf{e.g.}} \ T: P_2(\mathbb{R}) \to P_3(\mathbb{R}), \ f \in P_2(\mathbb{R}) \mapsto T(f) \in P_3(\mathbb{R}), \ T(f(x)) = \int_0^x f(t) dt.$$

$$\underline{U: P_3(\mathbb{R})} \to P_2(\mathbb{R}), \ f \in P_3(\mathbb{R}) \mapsto U(f) \in P_3(\mathbb{R}), \ U(f(x)) = f'(x).$$

$$P_{2}(\mathbb{R}) \xrightarrow{I} P_{3}(\mathbb{R}) \xrightarrow{U} P_{2}(\mathbb{R})$$

$$\downarrow [\cdot]_{\alpha} \qquad \qquad \downarrow [\cdot]_{\beta} \qquad \qquad \downarrow [\cdot]_{\alpha}$$

$$\mathbb{R}^{3} \xrightarrow{[T]_{\alpha}^{\beta}} \mathbb{R}^{4} \xrightarrow{[U]_{\beta}^{\gamma}} \mathbb{R}^{3}$$

For
$$T(1) = x$$
, $T(x) = \frac{1}{2}x^2$, $T(x^2) = \frac{1}{3}x^3$
 $u(1) = 0$, $u(x) = 1$, $u(x^2) = 2x$, $u(x^3) = 3x^2$

$$[T]^{\beta} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix} \qquad [U]^{\gamma} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix}$$

$$[T]_{\alpha}^{\beta} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}_{4 \times 3}, \quad [U]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}_{3 \times 4}$$

13/16

By definition, $UT = I : P_2(\mathbb{R}) \to P_2(\mathbb{R})$

$$[UT]^{\alpha}_{\alpha} = [I_{P_2(\mathbb{R}^2)}]_{\alpha} = I_3 = [U]^{\alpha}_{\beta}[T]^{\beta}_{\alpha}$$

Remark:

$$V \xrightarrow{T} W$$

$$\downarrow [\cdot]_{\alpha} \qquad \downarrow [\cdot]_{\beta}$$

$$\mathbb{F} \xrightarrow{[T]_{\alpha}^{\beta}} \mathbb{R}^{n}$$

Case dim(V) = 1: $\alpha = \{v\}$ o.b. for V where $v \neq 0$.

For the matrix of T in $\alpha \& \beta$,

$$[T]_{\alpha}^{\beta} = [T(v)]_{\beta}$$

which is just the coordinate (column) vector of T(v) under β !

Corollary: Let $T \in \mathcal{L}(V, W)$, where V, W are finite-dimensional with the o.b. $\beta \& \gamma$, respectively. Then,

$$\forall u \in V$$
, $[T(u)]_{\gamma} = ([T(v)]_{\beta}) = [T]_{\beta}^{\gamma}[u]_{\beta}$.

$$u \in V \xrightarrow{T} T(U) \in W$$

$$\downarrow [\cdot]_{\beta} \qquad \qquad \downarrow [\cdot]_{\gamma}$$

$$[u]_{\beta} \in \mathbb{F}^{m} \xrightarrow{[T]_{\beta}^{\gamma}} [T(u)]_{\gamma} \in \mathbb{R}^{p}$$

$$m = \dim(V), p = \dim(W)$$

Proof. Take
$$v \in V$$
 (fix it!). If $v = 0 \in V$, it is true since $T(v) = T(0_v) = 0_W \Rightarrow [0_W]_{\gamma} = 0, [0_v]_{\beta} = 0 \Rightarrow [T]_{\beta}^{\gamma} = 0$.

Now let $v \in V$ with $v \neq 0$ Consider

$$\mathbb{F} \xrightarrow{f} V \xrightarrow{T} W$$

$$\downarrow [:]_{\alpha} \qquad \downarrow [:]_{\beta} \qquad \downarrow [:]_{\gamma}$$

$$\mathbb{F} \xrightarrow{[f]_{\alpha}^{\beta}} \mathbb{F}^{m} \xrightarrow{[T]_{\beta}^{\gamma}} \mathbb{F}^{p}$$

Here, $\alpha=\{1\}$ is a basis for \mathbb{F} , and

$$f(a) \stackrel{def}{=} av \in V, \forall a \in \mathbb{F}.$$

By Thm, $[Tf]^{\gamma}_{\alpha} = [T]^{\gamma}_{\beta}[f]^{\beta}_{\alpha}$. Here

$$[Tf]_{\alpha}^{\gamma} = [T(f(1))]_{\gamma} = [T(u)]_{\gamma}, \quad [f]_{\alpha}^{\beta} = [f(1)]_{\beta} = [u]_{\beta}.$$

Therefore, $[T(u)]_{\gamma} = [T]_{\beta}^{\gamma}[u]_{\beta}$.

Realize: for any $v \in V$, $[T]^{\gamma}_{\beta}$ can send β -coordinate of $v \in V$ to γ -coordinate of $T(v) \in W$.