MATH 2010E Advanced Calculus I
 Suggested Solution of Homework 3

Exercise 14.2

9. Find the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{y} \sin x}{x}$.

Solution.

$\lim _{(x, y) \rightarrow(0,0)} \frac{e^{y} \sin x}{x}=\lim _{(x, y) \rightarrow(0,0)}\left(e^{y}\right)\left(\frac{\sin x}{x}\right)=\lim _{(x, y) \rightarrow(0,0)}\left(e^{y}\right) \lim _{(x, y) \rightarrow(0,0)}\left(\frac{\sin x}{x}\right)=1 \cdot 1=1$.
21. Find the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$ by rewriting the fraction first.

Solution. Let $r=\sqrt{x^{2}+y^{2}}$. Then

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} \frac{\sin \left(r^{2}\right)}{r^{2}}=1 .
$$

27. Find the limit $\lim _{P \rightarrow(\pi, \pi, 0)}\left(\sin ^{2} x+\cos ^{2} y+\sec ^{2} z\right)$.

Solution. $\lim _{P \rightarrow(\pi, \pi, 0)}\left(\sin ^{2} x+\cos ^{2} y+\sec ^{2} z\right)=\sin ^{2} \pi+\cos ^{2} \pi+\sec ^{2} 0=0+1+1=2$.
41. By considering different paths of approach, show that the function $f(x, y)=-\frac{x}{\sqrt{x^{2}+y^{2}}}$ has no limit as $(x, y) \rightarrow(0,0)$.

Solution. Along $x=0$,

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=0}} f(x, y)=\lim _{y \rightarrow 0}-\frac{0}{\sqrt{0^{2}+y^{2}}}=\lim _{y \rightarrow 0} 0=0
$$

Along $y=0$ and $x>0$,

$$
\lim _{\substack{(x y) \rightarrow(0,0) \\ y=0, x>0}} f(x, y)=\lim _{x \rightarrow 0^{+}}-\frac{x}{\sqrt{x^{2}+0^{2}}}=\lim _{x \rightarrow 0^{+}}-1=-1 .
$$

Since the limit is different along different paths, $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
51. Let $f(x, y)= \begin{cases}1, & y \geq x^{4} \\ 1, & y \leq 0 \\ 0, & \text { otherwise. }\end{cases}$

Find each of the following limits, or explain that the limit does not exist.
(a) $\lim _{(x, y) \rightarrow(0,1)} f(x, y)$
(b) $\lim _{(x, y) \rightarrow(2,3)} f(x, y)$
(c) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$

Solution. (a) Since any point (x, y) close enough to $(0,1)$ (for example $\left.(x, y) \in B_{1 / 2}(0,1)\right)$ satisfies $y \geq x^{4}$, we have

$$
\lim _{(x, y) \rightarrow(0,1)} f(x, y)=\lim _{(x, y) \rightarrow(0,1)} 1=1
$$

(b) Since any point (x, y) close enough to $(2,3)$ (for example $\left.(x, y) \in B_{1 / 2}(2,3)\right)$ does not satisfy either $y \geq x^{4}$ or $y \leq 0$, we have

$$
\lim _{(x, y) \rightarrow(2,3)} f(x, y)=\lim _{(x, y) \rightarrow(2,3)} 0=0
$$

(c) Note that $\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=0}} f(x, y)=1$ while $\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=x^{4} / 2}} f(x, y)=0$. Hence $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.

55. Does knowing that

$$
1-\frac{x^{2} y^{2}}{3}<\frac{\tan ^{-1} x y}{x y}<1
$$

tell you anything about

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\tan ^{-1} x y}{x y} ?
$$

Give reasons for your answer.

Solution. Note that $\lim _{(x, y) \rightarrow(0,0)}\left(1-\frac{x^{2} y^{2}}{3}\right)=1$ and $\lim _{(x, y) \rightarrow(0,0)} 1=1$.
By the Sandwich Theorem, $\lim _{(x, y) \rightarrow(0,0)} \frac{\tan ^{-1} x y}{x y}=1$.
61. Find the limit of $f(x, y)=\frac{x^{3}-x y^{2}}{x^{2}+y^{2}}$ as $(x, y) \rightarrow(0,0)$ or show that the limit does not exist.

Solution. For $(x, y) \neq(0,0)$,

$$
|f(x, y)| \leq \frac{x^{2}}{x^{2}+y^{2}} \cdot|x|+\frac{y^{2}}{x^{2}+y^{2}} \cdot|x|=|x| .
$$

Since $\lim _{(x, y) \rightarrow(0,0)}|x|=0$, it follows from the Sandwich Theorem that $\lim _{(x, y) \rightarrow(0,0)}|f(x, y)|=0$. So $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.

Exercise 14.3

8. Find $\partial f / \partial x$ and $\partial f / \partial y$ where $f(x, y)=\left(x^{3}+(y / 2)\right)^{2 / 3}$.

Solution. $\frac{\partial f}{\partial x}=\frac{2}{3}\left(x^{3}+(y / 2)\right)^{-1 / 3} \cdot 3 x^{2}=\frac{2 x^{2}}{\sqrt[3]{x^{3}+(y / 2)}}$,
$\frac{\partial f}{\partial y}=\frac{2}{3}\left(x^{3}+(y / 2)\right)^{-1 / 3} \cdot \frac{1}{2}=\frac{1}{3 \sqrt[3]{x^{3}+(y / 2)}}$.
21. Find $\partial f / \partial x$ and $\partial f / \partial y$ where $f(x, y)=\int_{x}^{y} g(t) d t \quad(g$ is continuous for all $t)$.

Solution. By the Fundamental Theorem of Calculus, $\frac{\partial f}{\partial x}=-g(x)$ and $\frac{\partial f}{\partial y}=g(y)$.
28. Find f_{x}, f_{y} and f_{z} where $f(x, y, z)=\sec ^{-1}(x+y z)$.

Solution. Recall that $\frac{d \sec ^{-1} t}{d t}=\frac{1}{|t| \sqrt{t^{2}-1}}$ for $|t|>1$. Hence,
$f_{x}=\frac{1}{|x+y z| \sqrt{(x+y z)^{2}-1}}, \quad f_{y}=\frac{z}{|x+y z| \sqrt{(x+y z)^{2}-1}}, \quad f_{z}=\frac{y}{|x+y z| \sqrt{(x+y z)^{2}-1}}$.

