MATH 2010E Advanced Calculus I Suggested Solution of Homework 2

Exercise 11.3

68. Vertical and horizontal lines

(a) Show that every every vertical lines in the $x y$-plane has a polar equation of the form $r=a \sec \theta$.
(b) Find the analogous polar equation for horizontal lines in the $x y$-plane.

Solution. (a) $x=a \Longrightarrow r \cos \theta=a \Longrightarrow r=a \sec \theta$.
(b) $y=b \Longrightarrow r \sin \theta=b \Longrightarrow r=b \csc \theta$.

Exercise 11.4

5. Identify the symmetries of the curves. Then sketch the curves in the $x y$-plane.

$$
r=2+\sin \theta .
$$

Solution. Suppose (r, θ) is an arbitrary point on the curve. Then $r=2+\sin \theta$.
Since $2+\sin (-\theta)=2-\sin \theta \neq r$ and $2+\sin (\pi-\theta)=2+\sin \theta \neq-r$, the points $(r,-\theta)$, $(-r, \pi-\theta)$ do not lie on the curve. So the curve is not symmetric about the x-axis.
Since $2+\sin (\pi-\theta)=2+\sin \theta=r$, the point $(r, \pi-\theta)$ lies on the curve. So the curve is symmetric about the y-axis.
Since the curve is symmetric about the y-axis but not the x-axis, it is not symmetric about the origin.

Exercise 12.5

33. Find the distance from the point to the line.
$(0,0,12) ; \quad x=4 t, \quad y=-2 t, \quad z=2 t$
Solution. Write $S(0,0,12)$, and note that the line passes through $P(0,0,0)$ and is parallel to $\mathbf{v}:=4 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$. Then $\overrightarrow{P S} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 0 & 12 \\ 4 & -2 & 2\end{array}\right|=24 \mathbf{i}+48 \mathbf{j}=24(\mathbf{i}+2 \mathbf{j})$.
So, the distance from the point S to the line is

$$
d=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}=\frac{24 \sqrt{1^{2}+2^{2}+0^{2}}}{\sqrt{4^{2}+2^{2}+2^{2}}}=2 \sqrt{30} .
$$

47. Find the angles between the planes.
$x+y=1, \quad 2 x+y-2 z=2$
Solution. Note that the angle between the planes is the angle between their normals $\mathbf{n}_{1}:=\mathbf{i}+\mathbf{j}, \mathbf{n}_{2}:=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$.
So, the angle between the planes is

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}\right)=\cos ^{-1}\left(\frac{2+1}{\sqrt{2} \sqrt{9}}\right)=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4} .
$$

54. Find the point in which the line meets the plane.
$x=2, \quad y=3+2 t, \quad z=-2-2 t ; \quad 6 x+3 y-4 z=-12$
Solution. Substitute the equations of the line into the equation of the plane, we have

$$
\begin{aligned}
6(2)+3(3+2 t)-4(-2-2 t) & =-12 \\
14 t+29 & =-12 \\
t & =-\frac{41}{14} .
\end{aligned}
$$

So $x=2, y=3-\frac{41}{7}, z=-2+\frac{41}{7}$. The point of intersection is $\left(2,-\frac{20}{7}, \frac{27}{7}\right)$.

Exercise 13.3

1. Find the curve's unit tangent vector. Also, find the length of the indicated portion of the curve.
$\mathbf{r}(t)=(2 \cos t) \mathbf{i}+(2 \sin t) \mathbf{j}+\sqrt{5} t \mathbf{k}, \quad 0 \leq t \leq \pi$
Solution. For $0 \leq t \leq \pi$,

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=(-2 \sin t) \mathbf{i}+(2 \cos t) \mathbf{j}+\sqrt{5} \mathbf{k} \\
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{(-2 \sin t)^{2}+(2 \cos t)^{2}+(\sqrt{5})^{2}}=\sqrt{4\left(\sin ^{2} t+\cos ^{2} t\right)+5}=3 .
\end{gathered}
$$

So the unit tangent vector is

$$
\mathbf{T}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\left(-\frac{2}{3} \sin t\right) \mathbf{i}+\left(\frac{2}{3} \cos t\right) \mathbf{j}+\frac{\sqrt{5}}{3} \mathbf{k}, \quad 0 \leq t \leq \pi .
$$

Moreover, the required arclength of the curve is

$$
\int_{0}^{\pi}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{\pi} 3 d t=3 \pi
$$

Exercise 13.4

4. Find \mathbf{T}, \mathbf{N} and κ for the plane curve.
$\mathbf{r}(t)=(\cos t+t \sin t) \mathbf{i}+(\sin t-t \cos t) \mathbf{j}, \quad t>0$
Solution. For $t>0$,

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=(t \cos t) \mathbf{i}+(t \sin t) \mathbf{j}, \\
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{(t \cos t)^{2}+(t \sin t)^{2}}=|t|=t, \\
\mathbf{T}=\frac{\mathbf{r}^{\prime}}{\left|\mathbf{r}^{\prime}\right|}=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}, \\
\frac{d \mathbf{T}}{d t}=(-\sin t) \mathbf{i}+(\cos t) \mathbf{j}, \\
\left|\frac{d \mathbf{T}}{d t}\right|=\sqrt{(-\sin t)^{2}+(\cos t)^{2}}=1, \\
\mathbf{N}=\frac{\frac{d \mathbf{T}}{d t}}{\left|\frac{d \mathbf{T}}{d t}\right|}=(-\sin t) \mathbf{i}+(\cos t) \mathbf{j}, \\
\kappa=\frac{1}{\left|\mathbf{r}^{\prime}\right|} \cdot\left|\frac{d \mathbf{T}}{d t}\right|=\frac{1}{t} .
\end{gathered}
$$

Exercise 14.1

15. Find and sketch the level curves $f(x, y)=c$ on the same set of coordinates axes for the given values of c.
$f(x, y)=x y, \quad c=-9,-4,-1,0,1,4,9$.

Solution.

41. Display the values of the function $f(x, y)=x^{2}-y$ in two ways: (a) by sketching the surface $z=f(x, y)$ and (b) by drawing an assortment of level curves in the function's domain. Label each curves with its function value.

Solution.

(a)

(b)

58. Sketch a typical level surface for the function $f(x, y, z)=y^{2}+z^{2}$.

Solution.

