MATH 2010E Advanced Calculus I Suggested Solution of Homework 1

Exercise 12.3

5. $\mathbf{v}=5 \mathbf{j}-3 \mathbf{k}, \mathbf{u}=\mathbf{i}+\mathbf{j}+\mathbf{k}$.

Solution. (a) $\mathbf{v} \cdot \mathbf{u}=0(1)+5(1)+(-3)(1)=2,|\mathbf{v}|=\sqrt{0^{2}+5^{2}+(-3)^{2}}=\sqrt{34},|\mathbf{u}|=\sqrt{3}$.
(b) Let θ be the angle between \mathbf{v} and \mathbf{u}. Then $\cos \theta=\frac{\mathbf{v} \cdot \mathbf{u}}{|\mathbf{v} \| \mathbf{u}|}=\frac{2}{\sqrt{3} \sqrt{34}}$.
(c) The scalar component of \mathbf{u} in the direction of \mathbf{v} is $|\mathbf{u}| \cos \theta=\frac{2}{\sqrt{34}}$.
(d) $\operatorname{proj}_{\mathbf{v}} \mathbf{u}=(|\mathbf{u}| \cos \theta) \frac{\mathbf{v}}{|\mathbf{v}|}=\frac{2}{\sqrt{34}} \cdot \frac{1}{\sqrt{34}}(5 \mathbf{j}-3 \mathbf{k})=\frac{1}{17}(5 \mathbf{j}-3 \mathbf{k})$.
14. Find the measures of the angles between the diagonals of the rectangle whose vertices are $A=(1,0), B=(0,3), C=(3,4)$ and $D=(4,1)$.

Solution. Note $\overrightarrow{A C}=\langle 2,4\rangle$ and $\overrightarrow{B D}=\langle 4,-2\rangle$. Since $\overrightarrow{A C} \cdot \overrightarrow{B D}=2(4)+4(-2)=0$, so angles measures are all 90°.
29. Using the definition of the projection of \mathbf{u} onto \mathbf{v}, show by direct calculation that ($\mathbf{u}-$ $\left.\operatorname{proj}_{\mathbf{v}} \mathbf{u}\right) \cdot \operatorname{proj}_{\mathbf{v}} \mathbf{u}=0$.

Solution. Recall that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}$. Hence

$$
\begin{aligned}
\left(\mathbf{u}-\operatorname{proj}_{\mathbf{v}} \mathbf{u}\right) \cdot \operatorname{proj}_{\mathbf{v}} \mathbf{u} & =\left(\mathbf{u}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}\right) \cdot \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v} \\
& =\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right)(\mathbf{u} \cdot \mathbf{v})-\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right)^{2}(\mathbf{v} \cdot \mathbf{v}) \\
& =\frac{(\mathbf{u} \cdot \mathbf{v})^{2}}{\|\mathbf{v}\|^{2}}-\frac{(\mathbf{u} \cdot \mathbf{v})^{2}}{\|\mathbf{v}\|^{2}}=0
\end{aligned}
$$

Exercise 12.4

1. Find the length and direction (when defined) of $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$, where $\mathbf{u}=2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$, $\mathbf{v}=\mathbf{i}-\mathbf{k}$.

Solution. $\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -2 & -1 \\ 1 & 0 & -1\end{array}\right|=2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$. Hence,

$$
\begin{aligned}
\text { length } & =\|\mathbf{u} \times \mathbf{v}\|=\sqrt{2^{2}+1^{2}+2^{2}}=3, \\
\text { direction } & =\frac{\mathbf{u} \times \mathbf{v}}{\|\mathbf{u} \times \mathbf{v}\|}=\frac{2}{3} \mathbf{i}+\frac{1}{3} \mathbf{j}+\frac{2}{3} \mathbf{k} .
\end{aligned}
$$

Since $\mathbf{v} \times \mathbf{u}=-(\mathbf{u} \times \mathbf{v})$, so length $=3$ and direction $=-\frac{2}{3} \mathbf{i}-\frac{1}{3} \mathbf{j}-\frac{2}{3} \mathbf{k}$.
10. Sketch the coordinate axes and then include the vectors \mathbf{u}, \mathbf{v} and $\mathbf{u} \times \mathbf{v}$ as vectors starting at the origin: $\mathbf{u}=\mathbf{i}-\mathbf{k}, \mathbf{v}=\mathbf{j}$.

Solution. $\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & -1 \\ 0 & 1 & 0\end{array}\right|=\mathbf{i}+\mathbf{k}$.

20. Verify that $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}=(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}$ and find the volume of the parallelepiped (box) determined by \mathbf{u}, \mathbf{v} and \mathbf{w}.

Solution. By direct calculations or properties of determinant, we have

$$
\left|\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & -2 \\
-1 & 2 & -1
\end{array}\right|=\left|\begin{array}{ccc}
2 & 1 & -2 \\
-1 & 2 & -1 \\
1 & -1 & 1
\end{array}\right|=\left|\begin{array}{ccc}
-1 & 2 & -1 \\
1 & -1 & 1 \\
2 & 1 & -2
\end{array}\right|=4 .
$$

That is

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}=(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}=4 .
$$

So, volume of the parallelepiped $=|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|=4$.

Exercise 12.5

2. Find a parametric equation for the line through $P(1,2,-1)$ and $Q(-1,0,1)$.

Solution. The direction is $\overrightarrow{P Q}=-2 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$. A parametric equation for the required line is $(x, y, z)=(1,2,-1)+t(-2,-2,2)$.
15. Find a parametrization for the line segments joining points $(1,0,0)$ and $(1,1,0)$. Draw coordinate axes and sketch each segment, indicating the direction of increasing t for your parametrization.

Solution. The direction is \mathbf{j}. A parametrization for the line segment is $(x, y, z)=(1,0,0)+$ $t(0,1,0)$, where $0 \leq t \leq 1$.

21. Find an equation of the plane through $P_{0}(0,2,-1)$ and normal to $\mathbf{n}=3 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$.

Solution. An equation of the plane is

$$
\begin{aligned}
3(x-0)+(-2)(y-2)+(-1)(z-(-1)) & =0 \\
3 x-2 y-z & =-3 .
\end{aligned}
$$

23. Find an equation of the plane through $(1,1,-1),(2,0,2)$ and $(0,-2,1)$.

Solution. Note that $\mathbf{i}-\mathbf{j}+3 \mathbf{k}$ and $-\mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ are two vectors parallel to the plane. So

$$
\mathbf{n}:=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & 3 \\
-1 & -3 & 2
\end{array}\right|=7 \mathbf{i}-5 \mathbf{j}-4 \mathbf{k}
$$

is normal to the plane. Hence, an equation of the plane is

$$
\begin{aligned}
7(x-2)+(-5)(y-0)+(-4)(z-2) & =0 \\
7 x-5 y-4 z & =6 .
\end{aligned}
$$

