eg 3 $\quad\left\{\begin{array}{lc}x^{2}+y^{2}+z^{2}=2 \\ x+z=1 & \text { Solve fa } y=y(x), z=z(x) \text { ? } \\ \text { near }(0,1,1)\end{array}\right.$

$$
\begin{gathered}
(x, y, z) \\
\mathbb{R}^{3} \text { notation } \\
\hline g(x, y, z)=x^{2}+y^{2}+z^{2}=2 \\
h(x, y, z)=x+z=1
\end{gathered}
$$

near $(0,1,1)$

By IFT
I $y=y(x), z=z(x)$ near $(0,1,1)$
such that

$$
\left\{\begin{array}{l}
g(x, y(x), z(x))=2 \\
h(x, y(x), z(x))=1 \\
y(0)=1 \\
z(0)=1
\end{array}\right.
$$

Remark: $\frac{d y}{d x},\left.\frac{d z}{d x}\right|_{x=0}$ can be calculated by Implicit Diff.

$$
\begin{aligned}
& F_{1}\left(x, y_{1}, y_{2}\right)=x_{1}^{2}+y_{1}^{2}+y_{2}^{2}=c_{1} \\
& F_{2}\left(x, y_{1}, y_{2}\right)=x_{1}+y_{2}=c_{2} \\
& a=0, \vec{b}=\left(b_{1}, b_{2}\right)=(1,1) \quad \vec{c}=\left(c_{1}, c_{2}\right)=(2,1) \\
& \left.\left[\begin{array}{cc}
\frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} \\
\frac{\partial F_{2}}{\partial y_{1}} & \frac{\partial F_{2}}{\partial y_{2}}
\end{array}\right] \begin{array}{cc}
2 & 2 \\
0 & 1
\end{array}\right] \\
& \left(a, b, b, b_{2}\right) \\
& \begin{array}{c}
\text { invectiable } \\
\text { get } \neq 0)
\end{array}
\end{aligned}
$$

By IFT
$\exists y_{1}=\varphi_{1}(x), y_{2}=\varphi_{2}(x)$ near
$\left(a, b_{1}, b_{2}\right)$ such that

$$
\begin{aligned}
& F_{1}\left(x, \varphi_{1}(x), \varphi_{2}(x)\right)=c_{1} \\
& F_{2}\left(x, \varphi_{1}(x), \varphi_{2}(x)\right)=c_{2} \\
& \varphi_{1}(a)=b_{1} \\
& \varphi_{2}(a)=b_{2}
\end{aligned}
$$

Remark $\frac{d \varphi_{1}}{d x},\left.\frac{d \varphi_{2}}{d x}\right|_{x=a}$ can be calculated by Implicit Diff.
eg: Consider the constrains

$$
\left\{\begin{aligned}
x z+\sin \left(y z-x^{2}\right) & =8 \\
x+4 y+3 z & =18
\end{aligned}\right.
$$

$(2,1,4)$ is a solution.
Can we solve 2 of the variables as functions of the remaining variable?
Sole:

$$
\vec{F}(x, y, z)=\left[\begin{array}{l}
F_{1}(x, y, z) \\
F_{2}(x, y, z)
\end{array}\right]=\left[\begin{array}{l}
x z+\sin \left(y z-x^{2}\right) \\
x+4 y+3 z
\end{array}\right]
$$

$$
\left.\begin{array}{c}
x+y \cos \left(y z-x^{2}\right) \\
3
\end{array}\right]
$$

(check!)

$$
\begin{aligned}
& D \vec{F}=\left[\begin{array}{lll}
\frac{\partial F_{1}}{\partial x} & \frac{\partial F_{1}}{\partial y} & \frac{\partial F_{1}}{\partial z} \\
\frac{\partial F_{2}}{\partial x} & \frac{\partial F_{2}}{\partial y} & \frac{\partial F_{2}}{\partial z}
\end{array}\right]
\end{aligned}
$$

IF $T \Rightarrow x, y$ can be solved as (diff) functions of z near ($2,1,4$)

- x, z can be solved as (diff) functions of y near ($2,1,4$)
- No conclusion on whetter y, z can be solved as (diff) functions of x near $(2,1, \notin)$.

Remark: Implicit diff. \Rightarrow (if $y=y(x), z=z(x)$ diff.)
$\left[\begin{array}{ll}4 & 3 \\ 4 & 3\end{array}\right]\left[\begin{array}{l}\frac{d y}{d x} \\ \frac{d z}{d x}\end{array}\right]=-\left[\begin{array}{c}0 \\ 1\end{array}\right] \quad \begin{aligned} & \text { which has no solution, } \\ & \\ & \text { ce contraction! }\end{aligned}$

The (Inverse Function Theneme)
Let $\vec{f}: \Omega \longrightarrow \mathbb{R}^{n}$ be $C^{\prime}, \quad\left(\Omega \subset \mathbb{R}^{n}\right.$, open $)$
Suppre $D \vec{f}(\vec{a})$ is invertible ($n \times n$ matrix $)$
Then \exists open sets $U \subseteq \mathbb{R}^{n}$ containing \vec{a},

$$
V \subseteq \mathbb{R}^{n} \text { containing } \vec{b}=\vec{f}(\vec{a})
$$

such that \exists a unique function
$\overrightarrow{9}: V \rightarrow U \quad$ with

$$
\vec{g}(\vec{b})=\vec{a}
$$

satisfying $\left.\left\{\begin{array}{l}\vec{g}(\vec{f}(\vec{x}))=\vec{x}, \quad \forall \vec{x} \in U \\ \vec{f}(\vec{g}(\vec{y}))=\vec{y}, \quad \forall \vec{y} \in V\end{array} \text { (ie. } \vec{g}=|\vec{f}|_{U}\right)^{-1}\right)$
macover, \vec{g} is C^{\prime} and

$$
D \vec{g}(\vec{y})=[D \vec{f}(\vec{g}(\vec{y}))]^{-1}, \forall \vec{y} \in V
$$

(Pf: MATH 3060)
Remark: $\vec{g}=\left(\left.\vec{f}\right|_{U}\right)^{-1}$ is called a local inverse of \vec{f} at \vec{a}.
eg: $\vec{f}=\mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad \vec{f}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x^{2}-y^{2} \\ 2 x y\end{array}\right]$
Clearly, \vec{f} is not globally in vertible: $\vec{f}\left[\begin{array}{l}x \\ -y\end{array}\right]=\vec{f}\left[\begin{array}{l}x \\ y\end{array}\right]$ (ito 1)

Local inverse?
To check this:

$$
\begin{aligned}
D \vec{f} & =\left[\begin{array}{cc}
2 x & -2 y \\
2 y & 2 x
\end{array}\right] \\
\operatorname{det} D \vec{f} & =4 x^{2}+4 y^{2} \geqslant 0 \quad \& \quad{ }^{v}=0 \Leftrightarrow(x, y)=(0,0)^{\prime \prime} .
\end{aligned}
$$

For $(x, y) \neq(0,0)$, IFT (Inverse Function The) $\stackrel{\rightharpoonup}{f}$ has a locally inverse at $(x, y)(\neq(0,0))$.

For instance, let $(x, y)=(1,-1)$ \&
$\vec{g}(u, v)$ be a local inverse of $f(x, y)$ near $(x, y)=(1,-1)$.
$\left(\begin{array}{l}\text { where } \\ u=x^{2}-y^{2} \\ v=2 x y\end{array}\right)$

$$
\begin{aligned}
\vec{f}(1,-1) & =(0,-2) \Rightarrow g(0,-2)=(1,-1) \\
D \vec{g}(0,-2) & =(D f(1,-1))^{-1}=\left(\left[\begin{array}{cc}
2 x & -2 y \\
2 y & 2 x
\end{array}\right]_{(1,-1)}\right)^{-1} \\
& =\left[\begin{array}{cc}
2 & 2 \\
-2 & 2
\end{array}\right]^{-1}=\frac{1}{4}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \quad \text { (check!) }
\end{aligned}
$$

Explicit calculation of $\vec{g}(u, v)$:

$$
\left\{\begin{array}{l}
u=x^{2}-y^{2} \\
v=2 x y
\end{array}\right.
$$

near $(x, y)=(1,-1) \Rightarrow x \neq 0 \Rightarrow y=\frac{v}{2 x}$

$$
\begin{array}{cc}
\Rightarrow & u=x^{2}-\left(\frac{v}{2 x}\right)^{2} \\
\Rightarrow & 4 x^{4}-4 u x^{2}-v^{2}=0 \\
\Rightarrow & x^{2}=\frac{4 u \pm \sqrt{(-4 u)^{2}-4 \cdot 4\left(-v^{2}\right)}}{8} \\
& =\frac{u \pm \sqrt{u^{2}+v^{2}}}{2}
\end{array}
$$

$\operatorname{Put}(x, y)=(1,-1) \Rightarrow(u, v)=(0,-2)$

$$
1^{2}=\frac{0 \pm \sqrt{0^{2}+(-2)^{2}}}{2}
$$

\Rightarrow " -" should be rejected!

$$
\begin{aligned}
& \Rightarrow \quad x^{2}=\frac{u+\sqrt{u^{2}+v^{2}}}{2} \\
& \Rightarrow \quad x=\sqrt{\frac{u+\sqrt{u^{2}+v^{2}}}{2}} \quad\binom{\text { "- "rejected }}{\text { as } x \text { near } 1}
\end{aligned}
$$

\& hence $y=\frac{2 v}{x}=\frac{2 \sqrt{2} v}{\sqrt{u+\sqrt{u^{2}+v^{2}}}}$

$$
\therefore \quad g(u, v)=\left(\sqrt{\frac{u+\sqrt{u^{2}+v^{2}}}{2}}, \frac{2 \sqrt{2} v}{\sqrt{u+\sqrt{u^{2}+v^{2}}}}\right)
$$

near $(0,-2)$

Remark: In Implicit Function Thy \& Inverse Function Thru, we need to check get. of Jacobian matrix (a sabmeatrix) is nonzero. In case that the $\operatorname{det}=0$, we have No conclusion:
eg: Implicit Function The

$$
\begin{aligned}
& F(x, y)=x^{2}-y^{2}=0 \\
& \frac{\partial F}{\partial y}=-\left.2 y\right|_{(0,0)}=0
\end{aligned}
$$

y is not locally a function of x near $(0,0)$

$$
\begin{aligned}
& F(x, y)=x^{3}-y^{3}=0 \\
& \frac{\partial F}{\partial y}=-\left.3 y^{2}\right|_{(0,0)}=0
\end{aligned}
$$

$y=x$ is a function of x (both globally \& locally) near $(0,0)$

Thnerse function Tho

$$
\begin{aligned}
& f(x)=x^{2} \\
& f^{\prime}(0)=0
\end{aligned}
$$

Notujective near $x=0$
\Rightarrow no local inverse near

$$
\begin{array}{r}
f(x)=x^{3} \\
f^{\prime}(0)=0
\end{array}
$$

$g(y)=y^{1 / 3}$ is a local inverse near $x=0$ (in feet, also global)

Brief review
Basic geometry: vectors, lines, planes,
curves (tangent vectas, arc-longth),
open set, closed set,
interior, exterior, boundary
Limit: Defüition, Squeeze Thm, Continuity
Partial derivative: $1^{\text {st }}$ and higher order,
Clairaut's Thm (Mixed derivatives the) C^{k}-functions

Differentiability: Linearization, gradient, directional derivative, total differential

Chain Rule: Jacobian Matrix, normal vector to level set, Implicit differentiation

Extremum: global max/min on closed a bounded set
Taylor's expansion: $2^{\text {nd }}$ derivative test, Classification of local extremum

Lagrange Multiplier: Constrained problem, Quadratic constraints

Implicit Function Theorem \& Inverse Function Theorem

