Implicit Function Thereon
Recall: Implicit differentiation
eg. $x^{2}+y^{2}+z^{2}=2$ and if $z=z(x, y)$,
then

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)=0 \Rightarrow 2 x+2 z \frac{\partial z}{\partial x}=0 \\
& \frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right)=0 \Rightarrow 2 y+2 z \frac{\partial z}{\partial y}=0
\end{aligned}
$$

If the point (x, y, z) satisfies $z \neq 0$ then we have $\frac{\partial z}{\partial x}=-\frac{x}{z} \& \frac{\partial z}{\partial y}=-\frac{y}{z}$

Question: If a level set $g(x, y)=c$ (a una generally) is given, can we "solve" the constraint? ie. call we füd $y=h(x)$ s.t. $g(x, h(x))=c$ or $\quad x=k(y)$ sit. $g(k(y), y)=c$?
eg 1 $g(x, y)=x^{2}-y^{2}=0 \quad(\Rightarrow x= \pm y)$

But near $(x, y)=(0,0)$

$$
\begin{array}{ll}
2 y \text {-valuer } & \text { Cannot solve } \\
\leftrightarrow(x \text {-value } & \text { fa a function } \\
\text { It cannot be a graph } \\
\text { of a function } y=\hbar(x) & y=t(x) \\
& \text { near }(0,0) .
\end{array}
$$

eg 2 S: $x^{2}+y^{2}+z^{2}=2$ in \mathbb{R}^{3}
Call we solve $z=h(x, y)$ near $(0,1,1)$?
Can we solve $x=k(y, z)$ near $(0,1,1)$?
Observations:
Is question: if $z=h(x, y)$ exists, then

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \partial _ { x } (x ^ { 2 } + y ^ { 2 } + z ^ { 2 }) = 0 } \\
{ \partial y (x ^ { 2 } + y ^ { 2 } + z ^ { 2 }) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{ll}
\frac{\partial z}{\partial x}=-\frac{x}{z} & \text { provided } \\
\frac{\partial z}{\partial y}=-\frac{y}{z} & \text { that } z \neq 0 .
\end{array}\right.\right. \\
& \Rightarrow \frac{\partial z}{\partial x}(0,1,1)=0, \frac{\partial z}{\partial y}(0,1,1)=-1
\end{aligned}
$$

At least, there is no contradiction \& we have a hope to solve it!
$2^{\text {nd }}$ question: if $x=k(y, z)$ exists

$$
\left\{\begin{array} { l }
{ \partial _ { y } (x ^ { 2 } + y ^ { 2 } + z ^ { 2 }) = 0 } \\
{ \partial z (x ^ { 2 } + y ^ { 2 } + z ^ { 2 }) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
2 x \frac{\partial x}{\partial y}+2 y=0 \\
2 x \frac{\partial x}{\partial z}+2 z=0
\end{array}\right.\right.
$$

At the point $(0,1,1)$, we have $\left\{\begin{array}{l}0+2=0 \\ 0+2=0\end{array}\right.$
which is a contradiction.
So there exists NO $x=k(y, z)$ (which is diffenentible) at near the point $(x, y, z)=(0,1,1)$.

General situation (in 3-vaniables)

$$
F(x, y, z)=c
$$

If $z=z(x, y)$ (differentiable), then implicit differentiation

If $F(\vec{a})=C$ \& $\frac{\partial F}{\partial z}(\vec{a}) \neq 0$, then

$$
\left[\begin{array}{l}
\frac{\partial z}{\partial x} \\
\frac{\partial z}{\partial y}
\end{array}\right]=-\frac{1}{\frac{\partial F}{\partial z}(\vec{a})}\left[\begin{array}{c}
\frac{\partial F}{\partial x}(\vec{a}) \\
\frac{\partial F}{\partial y}(\vec{a})
\end{array}\right]
$$

eg 3 (Multiple constraints)

$$
e\left\{\begin{array}{l}
x^{2}+y^{2}+z^{2}=2 \\
x+z=1
\end{array} \quad\binom{3 \text {-variables, 2 equations }}{\text { expect } \varphi \text { is "1-diu" }}\right.
$$

Question: Can we solve $\left[\begin{array}{l}y \\ z\end{array}\right]=\left[\begin{array}{l}y(x) \\ z(x)\end{array}\right]$?

Observation: If we tuque $y=y(x) \& z=z(x)$, differentiable then

$$
\begin{align*}
& \frac{d}{d x}\left(x^{2}+(y(x))^{2}+(z(x))^{2}\right)=0 \\
& \Rightarrow \quad 2 x+2 y \frac{d y}{d x}+2 z \frac{d z}{d x}=0 \\
& \Rightarrow \quad y \frac{d y}{d x}+z \frac{d z}{d x}=-x \tag{1}
\end{align*}
$$

and $\quad \frac{d}{d x}(x+z(x))=0$

$$
\begin{align*}
\Rightarrow & 1+\frac{d z}{d x}=0 \tag{z}\\
\therefore & {\left[\begin{array}{ll}
y & z \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\frac{d y}{d x} \\
\frac{d z}{d x}
\end{array}\right]=\left[\begin{array}{c}
-x \\
-1
\end{array}\right] }
\end{align*}
$$

\qquad

So we have a tope to the existence of $\left[\begin{array}{l}y \\ z\end{array}\right]=\left[\begin{array}{l}y(x) \\ z(x)\end{array}\right]$.
Fa instance $(x, y, z)=(0,1,1)$ (on $e)$

$$
\begin{aligned}
& \quad \operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=1 \neq 0 \\
& \Rightarrow \quad\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\frac{d y}{d x} \\
\frac{d z}{d x}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \quad \text { is solvable } \\
& \text { and } \quad\left[\begin{array}{l}
\frac{d y}{d x} \\
\frac{d z}{d x}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \stackrel{(\text { (check })}{=}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

In general, given $\quad C=\left\{\begin{array}{l}F_{1}(x, y, z)=C_{1} \\ F_{2}(x, y, z)=C_{2}\end{array}\right.$

$$
\left(\vec{F}=\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right], \vec{F}(\vec{x})=\vec{C}, \quad \vec{F}=\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}\right)
$$

Suppae $F_{i}(a, b, c)=C_{i}, i=1,2$
Assume $y=y(x), z=z(x)$ hear (a, b, c) (diff.)
$\binom{$ Implicit }{ differentiation }$\quad\left\{\begin{array}{l}\frac{d}{d x} F_{1}(x, y(x), z(x))=0 \\ \frac{d}{d x} F_{2}(x, y(x), z(x))=0\end{array}\right.$

$$
\Rightarrow \quad\left\{\begin{array}{l}
\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} \frac{d y}{d x}+\frac{\partial F_{1}}{\partial z} \frac{d z}{d x}=0 \\
\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} \frac{d y}{d x}+\frac{\partial F_{2}}{\partial z} \frac{d z}{d x}=0
\end{array}\right.
$$

ie. $\left[\begin{array}{ll}\frac{\partial F_{1}}{\partial y} & \frac{\partial F_{1}}{\partial z} \\ \frac{\partial F_{2}}{\partial y} & \frac{\partial F_{2}}{\partial z}\end{array}\right]\left[\begin{array}{l}\frac{d y}{d x} \\ \frac{d z}{d x}\end{array}\right]=-\left[\begin{array}{l}\frac{\partial F_{1}}{\partial x} \\ \frac{\partial F_{2}}{\partial x}\end{array}\right]$
\therefore If $\left[\begin{array}{ll}\frac{\partial F_{1}}{\partial y} & \frac{\partial F_{1}}{\partial z} \\ \frac{\partial F_{2}}{\partial y} & \frac{\partial F_{2}}{\partial z}\end{array}\right]_{\text {at }(a, b, c)}^{\text {is invectiable }}$ (i.e. $\operatorname{det}() \neq 0$)
then $\left[\begin{array}{l}\frac{d y}{d x} \\ \frac{d z}{d x}\end{array}\right]=-\left[\begin{array}{ll}\frac{\partial F_{1}}{\partial y} & \frac{\partial F_{1}}{\partial z} \\ \frac{\partial F_{2}}{\partial y} & \frac{\partial F_{2}}{\partial z}\end{array}\right]^{-1}\left[\begin{array}{l}\frac{\partial F_{1}}{\partial x} \\ \frac{\partial F_{2}}{\partial x}\end{array}\right] \quad(a t(a, b, c))$

General dimensions
Given $n+k$ variables, k equations

$$
\begin{gathered}
\left(x_{1}, \cdots x_{n}, y_{1}, \cdots, y_{k}\right) \quad n+k \text { variables } \\
\left\{\begin{array}{c}
F_{1}\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{k}\right)=c_{1} \\
\vdots \\
F_{k}\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{k}\right)=c_{k}
\end{array}\right.
\end{gathered}
$$

expect: y_{1}, \cdots, y_{k} can be solved as functions of

$$
x_{1}, \ldots, x_{n} .
$$

In (Implicit Function Theorem)
Let $\Omega \subseteq \mathbb{R}^{n+k}$ be open, $\vec{F}: \Omega \rightarrow \mathbb{R}^{k}, \vec{F}=\left[\begin{array}{c}F_{1} \\ \vdots \\ F_{k}\end{array}\right]$ be \underline{C}^{\prime} Denote $\vec{x}=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \& \vec{y}=\left(y_{1}, \cdots, y_{k}\right) \in \mathbb{R}^{k}$.

$$
\vec{F}(\vec{x}, \vec{y})=\left[\begin{array}{c}
F_{1}(\vec{x}, \vec{y}) \\
\vdots \\
F_{k}(\vec{x}, \vec{y})
\end{array}\right]=\left[\begin{array}{c}
F_{1}\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{k}\right) \\
\vdots \\
F_{k}\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{k}\right)
\end{array}\right]
$$

Suppre $(\vec{a}, \vec{b}) \in \Omega$, where $\vec{a} \in \mathbb{R}^{n}, \vec{b} \in \mathbb{R}^{k}$ such that

$$
\vec{F}(\vec{a}, \vec{b})=\vec{c}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right] \in \mathbb{R}^{k}
$$

and the kxk matrix

$$
\left[\frac{\partial F_{i}}{\partial y_{j}}(\vec{a}, \vec{b})\right]_{1 \leqslant i, j \leqslant k}=\left[\begin{array}{ccc}
\frac{\partial F_{1}}{\partial y_{1}}(\vec{a}, \dot{b}) & \cdots & \frac{\partial F_{1}}{\partial y_{k}}(\vec{a}, \vec{b}) \\
\vdots & & \vdots \\
\frac{\partial F_{k}}{\partial y_{1}}(\vec{a}, \vec{b}) & \cdots & \frac{\partial F_{k}}{\partial y_{k}}(\vec{a}, \vec{b})
\end{array}\right]
$$

is invertible (ie. $\operatorname{det}\left[\frac{\partial F_{i}}{\partial y_{j}}(\vec{a}, \vec{b})\right] \neq 0$)
Then there are open sets $U \subseteq \mathbb{R}^{n}$ containing \vec{a}, and $V \subseteq \mathbb{R}^{k}$ containing \vec{b} such that there exists a unique function $\vec{\varphi}: U \rightarrow V$ with $\vec{\varphi}(\vec{a})=\vec{b}$ and

$$
\vec{F}(\vec{x}, \vec{\varphi}(\vec{x}))=\vec{C}, \forall \vec{x} \in U
$$

Moreover, $\vec{\varphi}$ is C^{\prime} and (by inuplicif differentiation)

$$
\left[\frac{\partial \varphi_{j}}{\partial x_{l}}(\vec{x})\right]_{k \times n}=-\left[\frac{\partial F_{i}}{\partial y_{j}}(\stackrel{\rightharpoonup}{x}, \vec{\varphi}(\vec{x})]_{k \times k}^{-1}\left[\frac{\partial F_{i}}{\partial x_{l}}(\vec{x}, \vec{\varphi}(\vec{x}))\right]_{k \times n}\right.
$$

(Pf: in MATH3060)

Special cuas $(A): k=1$ (1 constrañt)

$$
\begin{aligned}
& F: \Omega \subset \mathbb{R}^{n+1} \rightarrow \mathbb{R} \\
& F(\vec{x}, \vec{y})=F\left(x_{1}, \cdots, x_{n}, y\right)=c \quad \text { (constraint) }
\end{aligned}
$$

Suppre $\vec{a}=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{R}^{n}, b \in \mathbb{R}$ s.t.

$$
F\left(a_{1}, \cdots, a_{n}, b\right)=c
$$

IFT: If $\frac{\partial F}{\partial y}\left(a_{1}, \cdots, a_{n}, b\right) \neq 0$, then

$$
\exists U \text { ogen } \text { s.t. }\left(a_{1}, \cdots, a_{n}\right) \in U \text { and } V^{\text {open }} \subset \mathbb{R} \text { s.t. } b \in V
$$

\& $\quad \varphi=U \rightarrow V$ s.t. $\varphi\left(a_{1}, \cdots, a_{n}\right)=b \quad$ \&

$$
F\left(x_{1}, \cdots, x_{n}, \varphi\left(x_{1}, \cdots, x_{n}\right)\right)=C \quad \forall\left(x_{1}, \cdots, x_{n}\right) \in U
$$

ii., $y=\varphi\left(x_{1}, \cdots, x_{n}\right)$ "near' $\left(a_{1}, \cdots, a_{n}\right)$ soluring the
coustraint $\quad F\left(x_{1}, \cdots, x_{n}, y\right)=c$
(at the point $y\left(x_{1}, \cdots, x_{n}\right)=b$)

In eg 2: $\quad x^{2}+y^{2}+z^{2}=2 \quad$ solve $z=z(x, y)$

(x, y, z) \mathbb{R}^{3} notation	$\left(x_{1}, x_{2}, y\right)$ general notation
$g(x, y, z)=x^{2}+y^{2}+z^{2}=2$ near $(0,1,1)$	$\left.\begin{array}{c}\text { this "y"' is not } \\ \text { the " } y^{\prime \prime} \text { on the } \\ \text { other side }\end{array}\right)$
$\frac{\partial g}{\partial z}(0,1,1)=2 \neq 0$	$\vec{a}=\left(x_{1}, x_{2}, y\right)=x_{1}^{2}+x_{2}^{2}+y^{2}=c \quad(0,1), b=1$

By IFT

$$
\exists z=z(x, y)^{\prime \prime} \text { near }{ }^{\prime \prime}(0,1,1) \quad \exists y=\varphi\left(x_{1}, x_{2}\right)^{\prime \prime} \text { near }{ }^{\prime \prime}\left(a_{1}, a_{2}, b\right)
$$

sit.

$$
\left\{\begin{array}{r}
g(x, y, z(x, y))=2 \\
z(0,1)=1
\end{array}\right.
$$

$$
\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \text { can be }
$$

computed by nuplicit differentiation.

Special care (B) $\quad n=1, k=2 \quad$ (2 -constraints)

$$
\begin{aligned}
& \vec{F}: \Omega \subseteq \mathbb{R}^{1+2} \longrightarrow \mathbb{R}^{2} \\
& \vec{F}\left(x, y_{1}, y_{2}\right)=\left[\begin{array}{l}
F_{1}\left(x, y_{1}, y_{2}\right) \\
F_{2}\left(x, y_{1}, y_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
\end{aligned}
$$

Suppre $\left(a, b_{1}, b_{2}\right)$ satisfies the constraints $\vec{F}\left(a, b_{1}, b_{2}\right)=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$ then IF T means
If $\left[\begin{array}{ll}\frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} \\ \frac{\partial F_{2}}{\partial y_{1}} & \frac{\partial F_{2}}{\partial y_{2}}\end{array}\right]\left(a, b_{1}, b_{2}\right)$ is invertible $\quad(\operatorname{det} \neq 0)$
then $\exists y_{1}=\varphi_{1}(x) \& y_{2}=\varphi_{2}(x)$ "near" $\left(a, b_{1}, b_{2}\right)$
soling the constraints (locally)

$$
\left\{\begin{array}{l}
F_{1}\left(x, \varphi_{1}(x), \varphi_{2}(x)\right)=c_{1} \\
F_{2}\left(x, \varphi_{1}(x), \varphi_{2}(x)\right)=c_{2} \\
\& \quad\left(\varphi_{1}(a), \varphi_{2}(a)\right)=\left(b_{1}, b_{2}\right)
\end{array}\right.
$$

