eg 1

$$
\begin{aligned}
& f(x, y)=x^{2}+y^{2} \\
& \vec{\nabla} f=(2 x, 2 y)
\end{aligned}
$$

Fa instance, let $c=25$
then $(3,4) \in f^{-1}(25)$

$$
\vec{\nabla} f(3,4)=(6,8) \perp S=f^{-1}(25
$$


fossae $c(>0)$ at the point $(3,4)$
eg z

$$
\begin{aligned}
f(x, y) & =x^{2}-y^{2} \\
\vec{\nabla} f(x, y) & =(2 x,-2 y)
\end{aligned}
$$

(Ex!) Try other pouts

eg 3 $S: x^{2}+4 y^{2}+9 z^{2}=22$ (Ellipsoid)
Find equation of tangent plane of $S$ at the point $(3,1,1)$
(Chock: $(3,1,1)$ is on $S$ )


Sold: Let $f(x, y, z)=x^{2}+4 y^{2}+9 z^{2}$
Then $S=f^{-1}(22)$

$$
\begin{aligned}
& \vec{\nabla} f=(2 x, 8 y, 18 z) \\
& \vec{\nabla} f(3,1,1)=(6,8,18) \perp S \text { at }(3,1,1)
\end{aligned}
$$

$\therefore \vec{\nabla} f(3,1,1)$ is a normal to the tangent plane at the point $(3,1,1)$.

$$
\Rightarrow \quad \vec{\nabla} f(3,1,1) \cdot(x-3, y-1, z-1)=0
$$

is a equation of the tangent plane.

$$
\therefore \quad 6(x-3)+8(y-1)+18(z-1)=0
$$

ar $\quad 3 x+4 y+9 z=22$ is the required equation of the trongent at $(3,1,1)$.

Proof of the Thm: $(\vec{\nabla} f \perp S)$
Let $\vec{\gamma}(t)$ be a cure on $S$
passing through the point $\vec{a}$
 such that $\vec{\gamma}(0)=\vec{a}$

Then $\quad f(\vec{\gamma}(t))=c, \forall t$

$$
\text { Chain rule } \Rightarrow 0=\left.\frac{d}{d t}\right|_{t=0}(\vec{\gamma}(t))=\left.\vec{\nabla} f(\vec{\gamma}(t)) \cdot \vec{\gamma}^{\prime}(t)\right|_{t=0}
$$

i.e. $\quad \vec{\nabla} f(\vec{a}) \cdot \vec{\gamma}^{\prime}(0)=0$
$\vec{\nabla} f(\vec{a}) \perp$ all cones on $S$ at $\vec{a}$
$\Rightarrow \quad \vec{\nabla} f(\vec{a}) \perp S$ at $\vec{a}$. tangent vecta of the cure at $\gamma(t)$ which is also a tangent vector of $S$

Another Application of Chain Rule:
Implicit Differentiation
eg 1 $C: x^{2}+y^{2}=1 \quad(y$ can be solved in term of $x(f a r$ most $x))$
Find $\frac{d y}{d x}$ at $\left(\frac{3}{5}, \frac{4}{5}\right)$.

Som: near the point $\left(\frac{3}{5}, \frac{4}{5}\right)$

$$
\begin{gathered}
x^{2}+(y(x))^{2}=1 \\
\Rightarrow \quad \frac{d}{d x}\left(x^{2}+(y(x))^{2}\right)=0 \\
2 x+2 y \frac{d y}{d x}=0
\end{gathered}
$$

$$
\Rightarrow \quad \frac{d y}{d x}=-\frac{x}{y} \quad(\text { provided } y \neq 0)
$$

At the point $\left(\frac{3}{5}, \frac{4}{5}\right) \Rightarrow \frac{d y}{d x}=-\frac{3}{4}$.

Remark: One cannot solve $y$ as a function of $x$ near the points $(1,0)$ and $(-1,0)$ which correspond to " $y=0$ ".
eg 2 Consider $\quad S: x^{3}+z^{2}+y e^{x z}+z \cos y=0$
Given that $z$ can be regarded as a function $z=z(x, y)$ of (independent) variables $x, y$ locally near the point $(0,0,0)$. (Clearly $(0,0,0) \in S$ )
Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ at $(0,0,0)$
Son: $\quad \frac{\partial}{\partial x}\left(x^{3}+z^{2}+y e^{x z}+z \cos y\right)=0$

$$
\begin{aligned}
& 3 x^{2}+2 z \frac{\partial z}{\partial x}+y e^{x z} \frac{\partial}{\partial x}(x z)+\frac{\partial z}{\partial x} \cos y=0 \\
& 3 x^{2}+2 z \frac{\partial z}{\partial x}+y e^{x z}\left(z+x \frac{\partial z}{\partial x}\right)+\frac{\partial z}{\partial x} \operatorname{coy} y=0 \\
& \left(3 x^{2}+y z e^{x z}\right)+\left(2 z+x y e^{x z}+\cos y\right) \frac{\partial z}{\partial x}=0 \\
& \Rightarrow \quad \frac{\partial z}{\partial x}=-\frac{3 x^{2}+y z e^{x z}}{2 z+x y e^{x z}+\cos y}
\end{aligned}
$$

(provided $2 z+x y e^{x z}+\cos y \neq 0$ )

$$
\Rightarrow \quad \frac{\partial z}{\partial x}(0,0)=0 \quad\left(\sin 02 \cdot 0+0 \cdot 0 e^{0 \cdot 0}+\infty 00=1 \neq 0\right)
$$

Similarly, $\quad \frac{\partial}{\partial y}\left(x^{3}+z^{2}+y e^{x z}+z \cos y\right)=0$

$$
\Rightarrow \quad 2 z \frac{\partial z}{\partial y}+e^{x z}+y e^{x z}\left(x \frac{\partial z}{\partial y}\right)+\frac{\partial z}{\partial y} \cos y-z \sin y=0
$$

$\left(\right.$ check ) $\frac{\partial z}{\partial y}=\frac{z \sin y-e^{x z}}{2 z+x y e^{x z}+\cos y} \quad$ (provided $2 z+x y e^{x z}+\cos y \neq 0$ )

$$
\Rightarrow \frac{\partial z}{\partial y}(0,0)=-1
$$

Finding Extrema (Maximum \& Minimum)

Def: Let $\left\{\begin{array}{l}\bullet f=A \rightarrow \mathbb{R}, A \subset \mathbb{R}^{n} \text { (may notopen) } \\ \cdot \vec{a} \in A\end{array}\right.$
(1) $f$ is said to have a global (absolute) maximum at $\vec{a}$ if $f(\vec{a}) \geqslant f(\vec{x}) \quad \forall \vec{x} \in A$
(2) $f$ is said to have a bol (relative) maximum at $\vec{a}$ if $f(\vec{a}) \geqslant f(\vec{x}) \quad \forall \vec{x} \in A$ "near" $\vec{a}$

$$
\text { (ie. } \exists \varepsilon>0 \text { sit. } f(\vec{a}) \geqslant f(\vec{x}), \quad \forall \vec{x} \in A \cap B_{\varepsilon}(\vec{a}) \text { ) }
$$

(3) Similar definitions for global (absolute) minimum and local (relative) minimum by changing the inequality to $f(\vec{a}) \leqslant f(\vec{x})$.

Remark: Global Extremum (max/min) is abs a local extremum.
eg $f:\left[x_{1}, x_{5}\right] \rightarrow \mathbb{R}$


max >value : $y_{2}$ $\min : y_{1}$
eg 2 (NOT every function has global maximin)
(i) $f(x)=e^{x}$ on $\mathbb{R}$ (Domain unbounded)

No global mim: $\lim _{x \rightarrow-\infty} f(x)=0 \& f(x)>0 \quad \forall x \in \mathbb{R}$


No global max: $\lim _{x \rightarrow+\infty} f(x)=+\infty$
(ii) $f(x)=x$ on $(-1,1]$ (Domain not closed)

Has global max at $x=1$
(with max, value $=f(1)=1$ )

but no global nix
(iii) $f=\left\{\begin{array}{cc}1-x, & 0<x \leqslant 1 \\ 0, & x=0 \\ -1-x, & -1 \leqslant x<0\end{array}\right.$ (diocatiuncos)

No global max and global min
 (since $f$ is discontancons)

Extreme Value Thm (EVT)
Let $\left\{\begin{array}{l}\cdot A \subseteq \mathbb{R}^{n} \text { be closed and bounded, } \\ . f: A \rightarrow \mathbb{R} \text { be continuous }\end{array}\right.$
Then $f$ has global max and mise.
Remarks: (1) "compact" = closed and bounded
(2) The Thu is a sufficient, but not a necessary condition.

Def: Let $\left\{\begin{array}{l}\cdot f: A \rightarrow \mathbb{R}, A \subseteq \mathbb{R}^{n} \text { (not necessary open) } \\ \vec{a} \in \operatorname{Int}(A)\end{array}\right.$
Then $\vec{a}$ is called a critical point of $f$ if either (1) $\vec{\nabla} f(\vec{a})$ DNE (does not exist) or (2) $\vec{\nabla} f(\vec{a})=\overrightarrow{0}$
(is, either " $\frac{\partial f}{\partial x_{i}}(\vec{a})$ DNE fa soul $i=1 ; j n^{\prime \prime}$ or " $\frac{\partial f}{\partial x_{i}}(\vec{a})=0$ fa all $i=1, \cdots, n$ )

Thu (First Derivative Test)
Suppose $f=A \rightarrow \mathbb{R}\left(A \subset \mathbb{R}^{n}\right)$ attains a local extremum at $\vec{a} \in \operatorname{Int}(A)$, then $\vec{a}$ is a critical point of $f$.

Pf: Suppose $f$ has a local extrenoum at $\vec{a} \in \operatorname{Int}(A)$ If $\vec{\nabla} f(\vec{a})$ DNE, then $\vec{a}$ is a nifical point.
If $\vec{\nabla} f(\vec{a})$ exists, then
all $\frac{\partial f}{\partial x_{i}}(\vec{a})$ exists
$\forall i$, Consider 1 -variable function $g_{i}(t)=f\left(\vec{a}+t \vec{e}_{i}\right)$

$$
\begin{aligned}
& \uparrow \\
& \left.\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots
\end{array}\right] \leqslant \begin{array}{c}
\text { cushat }
\end{array}\right]
\end{aligned}
$$

Then $g_{i}(0)=f(\vec{a}) \stackrel{\stackrel{\rightharpoonup}{a}}{\leqslant} f\left(\vec{a}+t \vec{e}_{i}\right) \quad f a|t|$ small.

$$
\begin{aligned}
& \Rightarrow 0=g_{i}^{\prime}(0)=\left.\frac{d}{d t}\right|_{t=0} f\left(\vec{a}+t \vec{e}_{i}\right)=\frac{\partial f}{\partial x_{i}}(\vec{a}) \quad(\forall i) \\
& \therefore \vec{\nabla} f(\vec{a})=\overrightarrow{0}
\end{aligned}
$$

Strategy for füduing Extrema

$$
f=A \rightarrow \mathbb{R}
$$

(1) Find critical points of $f$ in $\operatorname{Int}(A)$.
(2) Study $f$ on boundary $\partial A$ :
find maximin of $f$ on $\partial A$.
(3) Compare values of $f$ at points found in stops $(1) \&(2)$.
eg 1 Find global max/min of

$$
f(x, y)=x^{2}+2 y^{2}-x+3 \quad \text { fa } \quad x^{2}+y^{2} \leqslant 1 \quad\left(A=\left\{x^{2}+y^{2} \leqslant 1\right\}\right)
$$

Sole: Step 1 Critical points in $\operatorname{Int}\left\{x^{2}+y^{2} \leqslant 1\right\}$

$$
\left\{x^{2}+y^{2}<1\right\}
$$


( $f$ is a polynomail, $\vec{\nabla} f$ always exist)

$$
\begin{aligned}
& \vec{\nabla} f=(2 x-1,4 y) \\
& \vec{\nabla} f=\overrightarrow{0} \Leftrightarrow\left\{\begin{array}{r}
2 x-1=0 \\
4 y=0
\end{array} \Leftrightarrow(x, y)=\left(\frac{1}{2}, 0\right)\right.
\end{aligned}
$$

(the orly critical pt.) in $\operatorname{Int}(A)$

Carly $\left(\frac{1}{2}, 0\right) \in \operatorname{Int}(A)$
\& $f\left(\frac{1}{2}, 0\right)=\left(\frac{1}{2}\right)^{2}+0-\frac{1}{2}+3=\frac{11}{4}$

Step 2 Study $f$ on $\partial\left\{x^{2}+y^{2} \leqslant 1\right\}=\left\{x^{2}+y^{2}=1\right\}$
parametrize the boundary $\left\{x^{2}+y^{2}=1\right\}$ by angle $\theta$

$$
\left\{\begin{array}{l}
x=\cos \theta \\
y=\sin \theta
\end{array}\right.
$$

Then on $\partial\left\{x^{2}+y^{2} \leqslant 1\right\}$,

$$
\begin{aligned}
f(\theta)=f(\cos \theta, \sin \theta) & =\cos ^{2} \theta+2 \sin ^{2} \theta-\cos \theta+3 \\
& =-\cos ^{2} \theta-\cos \theta+5 \\
& =-\left(\cos \theta+\frac{1}{2}\right)^{2}+\frac{21}{4}
\end{aligned}
$$

max. value of $f$ on $\partial A=\frac{21}{4}$ (at $\left.\cos \theta=-\frac{1}{2} \Rightarrow(x, y)=\left(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)\right)$
min. value of $f$ on $\partial A=-\left(1+\frac{1}{2}\right)^{2}+\frac{21}{4}=3$

$$
(\text { at } \cos \theta=1 \Rightarrow(x, y)=(1,0))
$$

Step 3 Compare values of $f$ at pouts from steps $1 \& 2$.
$f\left(\frac{1}{2}, 0\right)=\frac{11}{4} \quad$ value of critical pt. in $\operatorname{Int}(A)$
$f\left(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)=\frac{21}{4} \quad \max$ value of $f$ on $\partial A$
$f(1,0)=3$
min value of $f \mathrm{on}_{\mathrm{n}} \partial A$

$\Rightarrow \max$ value $=\frac{21}{4}$ at the max points $\left(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$
\& noes value $=\frac{11}{4}$ at the mien pit $\left(\frac{1}{2}, 0\right)$ (global)

