Remark: $D_{\vec{u}} f(\vec{a})$ can be defined far any vector \vec{v}, not necessary $\|\vec{v}\|=1$ and could be $\overrightarrow{0}$, by the same defuition

$$
D_{\vec{v}} f(\vec{a})=\lim _{t \rightarrow 0} \frac{f(\vec{a}+t \vec{v})-f(\vec{a})}{t}
$$

One can show that

$$
D_{\vec{v}} f(\vec{a})= \begin{cases}\|\vec{v}\| D_{\vec{v}}^{\sqrt{v} \|} f(\vec{a}), & \text { if } \vec{v} \neq \overrightarrow{0} \\ 0, & \text { if } \vec{v}=\overrightarrow{0}\end{cases}
$$

and that

$$
D_{\vec{v}} f(\vec{a})=\vec{\nabla} f(\vec{a}) \cdot \vec{v} \quad \text { if } f \bar{i} \text { differentiable at } \vec{a}
$$

(not true in gevenen, if f is not differentiable) eg $f(x, y)=\sqrt{|x y|}$ at $(0,0)$

Properties of Gradient
If $\left\{\begin{array}{l}\cdot f, g: \Omega \rightarrow \mathbb{R} \quad\left(\Omega \subset \mathbb{R}^{n}, \text { open }\right) \text { are differentiable, } \\ \cdot C \text { is a constant, }\end{array}\right.$
then
(1) $\vec{\nabla}(f \pm g)=\vec{\nabla} f \pm \vec{\nabla} g$,
(2) $\vec{\nabla}(c f)=c \vec{\nabla} f$
(3) $\vec{\nabla}(f g)=g \vec{\nabla} f+f \vec{\nabla} g$
(4) $\vec{\nabla}\left(\frac{f}{g}\right)=\frac{g \vec{\nabla} f-f \vec{\nabla} g}{g^{2}} \quad$ provided $g \neq 0$
(Pf = Easily from properties of partial derivatives)

Total Differential (of real-valued function)
$f: \Omega \rightarrow \mathbb{R} \quad\left(\Omega \subseteq \mathbb{R}^{n}\right.$, open $)$ differentiable at $\vec{a} \in \Omega$.
Then limearization at \vec{a} :

$$
f(\vec{x})=f(\vec{a})+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\vec{a})\left(x_{i}-a_{i}\right)+\varepsilon(\vec{x})
$$

Usually denote:

$$
\begin{aligned}
& \Delta f=f(\vec{x})-f(\vec{a}) \\
& \Delta x_{i}=x_{i}-a_{i}
\end{aligned}
$$

Then $\Delta f \simeq \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\vec{a}) \Delta x_{i} \quad\left(\right.$ provided $\left.\lim _{\vec{x} \rightarrow \vec{a}} \frac{|\varepsilon(\vec{x})|}{\|\vec{x}-\vec{a}\|}=0\right)$
Classically, this approximation is presented as

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\vec{a}) d x_{i} \quad\binom{\text { thinking: " } \Delta f \rightarrow d f^{\prime \prime}}{\Delta x_{i} \rightarrow d x_{i}^{\prime \prime}}
$$

Def: Let $\left\{\begin{array}{l}\cdot f: \Omega \rightarrow \mathbb{R},\left(\Omega \subseteq \mathbb{R}^{n}, \text { open }\right) \\ \cdot \vec{a} \in \Omega\end{array}\right.$
Suppre that f is differentiable on Ω. Then the total differential of f at \vec{a} is defined to be the (faunal) expression:

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\vec{a}) d x_{i}
$$

Remark: In the future, $d f$ and $d x_{i}$ can be interpreted as a lear maps from \mathbb{R}^{n} to \mathbb{R}.
eg: Let $V(r, h)=\pi r^{2} h$
(Volume of the Cylinder)
V is $C^{\prime} \Rightarrow$ differentiable

$$
\begin{aligned}
d V & =\frac{\partial V}{\partial r} d r+\frac{\partial V}{\partial h} d h \\
& =2 \pi r h d r+\pi r^{2} d h
\end{aligned}
$$

For application:
Suppre we want to approximate the change of V when (r, h) changes $(r, h)=(3,12)$ to

$$
(3+0.08,12-0.3)
$$

Then let $d r=\Delta r=0.08$

$$
d h=\Delta h=-0.3
$$

we have

$$
\begin{aligned}
& \Delta V \approx d V=2 \pi r h d r+\pi r^{2} d h \quad\left(\begin{array}{l}
\text { at } \left.\begin{array}{l}
r=3, h=12 \\
d r, d h \text { as above }
\end{array}\right)(1) ~
\end{array}\right. \\
& =2 \pi \cdot 3 \cdot 12 \cdot 0.08+\pi(3)^{2}(-0.3) \\
& =3.06 \pi \approx 9.61 \text {. }
\end{aligned}
$$

Properties of Total Differential
If, $f, g: \Omega \rightarrow \mathbb{R}\left(\Omega \subseteq \mathbb{R}^{n}\right.$, open) are differentiable, and - $c \in \mathbb{R}$ is a constant.

Then
(1) $d(f \pm g)=d f \pm d g$,
(2) $d(c f)=c d f$
(3) $d(f g)=g d f+f d g$
(4) $\quad d\left(\frac{f}{g}\right)=\frac{g d f-f d g}{g^{2}}$ provided $g \neq 0$
($P f=$ Easily from properties of partial derivatives)

Summary (on differentiation of a real-calued function on \mathbb{R}^{n})

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

A. Types of differentiations (derivatives)

- Directional Derivative:

$$
D_{\vec{u}} f(\vec{a})=\lim _{t \rightarrow 0} \frac{f(\vec{a}+t \vec{u})-f(\vec{a})}{t} \quad(\|\vec{u}\|=1)
$$

- Partial derivatives:

$$
\frac{\partial f}{\partial x_{i}}(\vec{a})=D_{\vec{e}_{i}} f(\vec{a}), \quad \vec{e}_{i}=(0, \cdots, 1, \cdots 0)
$$

- Gradient

$$
\vec{\nabla} f(\vec{a})=\left(\frac{\partial f}{\partial x_{1}}(\vec{a}), \cdots, \frac{\partial f}{\partial x_{n}}(\vec{a})\right)
$$

- Total Differential

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\vec{a}) d x_{i}
$$

- Higher Derivatives

$$
\frac{\partial^{k_{1}+\cdots+k_{n}} f}{\partial x_{i}^{k_{1}} \cdots \partial x_{n}^{k_{n}}}(\vec{a})
$$

(provided f is $C^{k}, k=k_{1}+\cdots+k_{n}$)
\uparrow all partial dowisatives up to order k exiet and cantennous.
B. Linear approximation

- $L(\vec{x})=f(\vec{a})+\vec{\nabla} f(\vec{a}) \cdot(\vec{x}-\vec{a})$
- $f(\vec{x})=L(\vec{x})+\varepsilon(\vec{x})$
\sim errant term
- f is differentiable at \vec{a}

$$
\Leftrightarrow \quad \lim _{\vec{x} \rightarrow \dot{a}} \frac{|\varepsilon(\vec{x})|}{\|\vec{x}-\vec{a}\|}=0
$$

In this case, $d f \simeq \Delta f \quad$ (by identifying $d x_{i}=\Delta x_{i}$)
C. Relations among various concepts

- $C^{\infty} \Rightarrow \cdots \Rightarrow C^{k+1} \Rightarrow C^{k} \Rightarrow \cdots \Rightarrow C^{\prime} \Rightarrow C^{0}$ (No reverse implication)
- $\quad f$ is C^{\prime} on an peen set containing \vec{a}
\Downarrow 来
f is differentiable at \vec{a}

$$
\begin{aligned}
& \downarrow<{ }^{*} \\
& \begin{array}{ll}
D_{\vec{u}} f(\vec{a}) \text { exists } & \nRightarrow \\
\forall \vec{u} \in \mathbb{R}^{n}\|\vec{u}\|=1 & \neq \text { is contuncoros }
\end{array} \\
& \forall \vec{u} \in \mathbb{R}^{n} \text {, }\|\vec{u}\|=1 \\
& \Downarrow \sqrt{*} \\
& \text { * } \\
& \frac{\partial f}{\partial X_{i}}(\vec{a}) \text { exists, } \forall i=1 ; ; n
\end{aligned}
$$

Counter examples:
gl:

$$
\begin{aligned}
& f=\mathbb{R} \rightarrow \mathbb{R} \\
& f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases}
\end{aligned}
$$

f is differentiable on \mathbb{R} but $f^{\prime}(x)$ is not continues at $x=0$
Sauilarly $g(x)=x^{2 k-2} f(x)$ is k-tine differentiable but $g^{(k)}(x)$ is not continues at $x=0$.

Hence $\quad k$-time differentiable $\nRightarrow c^{k}$

In particular, $\quad c^{k-1} \Rightarrow c^{k}$
(Fa multivariable: $h(\vec{x})=h\left(x_{1} ; x_{n}\right)=g\left(x_{1}\right)$.)
$\lg 2$

$$
f(x, y)=\left\{\begin{array}{ccc}
\frac{x y^{2}}{x^{2}+y^{4}} & \text { if } & x^{2}+y^{2} \neq 0 \\
0 & \text { if } & x^{2}+y^{2}=0
\end{array}\right.
$$

$D_{\vec{u}} f(0,0)$ exxèts, \forall unit vector $\vec{u} \in \mathbb{R}^{2}$ but f is not contiunows at $(0,0)$
(Check!)
eg 3: $f(x, y)=|x+y|$ is continuous on \mathbb{R}^{2} but $f_{x}(0,0), f_{y}(0,0) \operatorname{DNE}$. (Chock!)
eg 4: $f(x, y)=\sqrt{|x y|}$

$$
f_{x}(0,0), f_{y}(0,0) \text { exièt } \quad(\text { un fact }=0)
$$

but $\operatorname{Da}_{\vec{u}} f(0,0) \quad \operatorname{DNE}$ for $\vec{u} \neq \pm \vec{e}_{r}, \pm \vec{e}_{2}$. (Check!)

Review: Matrix Multiplication
Let $A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \\ a_{m 1} & \cdots & a_{m n}\end{array}\right]$ be an $m \times n$-matric

$$
=\left[\begin{array}{c}
-\vec{a}_{1}- \\
\vdots \\
-\vec{a}_{m}-
\end{array}\right] \quad \text { where } \quad \vec{a}_{i}=\left(a_{i,}, \cdots a_{i n}\right) \in \mathbb{R}^{n}
$$

If

$$
b=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\vec{b} \\
1
\end{array}\right] \quad \begin{gathered}
\text { be a } n \times 1 \text {-matrix regarded } \\
\text { as a column vector in } \mathbb{R}^{n}
\end{gathered}
$$ as a column vector in \mathbb{R}^{n},

then (matrix multiplication)

$$
\begin{aligned}
& A b=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
-\vec{a}_{1}- \\
\vdots \\
-\vec{a}_{m}-
\end{array}\right]\left[\begin{array}{l}
1 \\
\vec{b} \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
a_{11} b_{1}+\cdots+a_{1 n} b_{n} \\
\vdots \\
a_{m 1} b_{1}+\cdots+a_{m n} b_{n}
\end{array}\right]=\left[\begin{array}{c}
\vec{a}_{0} \cdot \vec{b} \\
\vdots \\
\vec{a}_{m} \cdot \vec{b}
\end{array}\right] \\
& \text { (result } \\
& =m \times 1-\text { matrix } \\
& =\text { colum } m \text {-vector) }
\end{aligned}
$$

Similarly, for multiplication of $(1 \times n) \&(n \times k)$ matrices

$$
\begin{aligned}
& {[-\vec{a}-]\left[\begin{array}{ccc}
1 & \frac{1}{b_{1}} & \cdots \\
\vec{b}_{k} \\
1 & & \mid
\end{array}\right] \quad(\vec{j}, \overrightarrow{\substack{\text { row } \\
\text { vesta }}} \underbrace{\vec{b}_{1}, \cdots, \vec{b}_{k}}_{\substack{\text { column } \\
\text { vectas }}} \in \mathbb{R}^{n})} \\
& =\left[\vec{a} \cdot \vec{b}_{1}, \cdots, \vec{a} \cdot \vec{b}_{k}\right] \\
& (\text { result }=1 \times k \text {-matrix }=\text { row } k \text {-vesta })
\end{aligned}
$$

In general: $(m \times n)$ times $(n \times k)$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
\vec{a}_{0} \cdot \vec{b}_{1} & \cdots & \vec{a}_{1} \cdot \vec{b}_{k} \\
\vdots & & \vdots \\
\vec{a}_{m} \cdot \vec{b}_{1} & \cdots & \widetilde{a}_{m} \cdot \vec{b}_{k}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & & 1 \\
A \vec{b}_{1} & \cdots & A \vec{b}_{k} \\
1 & & 1
\end{array}\right] \quad\left(=A\left[\begin{array}{ccc}
1 \vec{b}_{1} & \cdots & \vec{b}_{k} \\
1 & & 1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-\vec{a}_{1} B- \\
\vdots \\
-\vec{a}_{m} B-
\end{array}\right] \quad\left(=\left[\begin{array}{c}
-\vec{a}_{1}- \\
\vdots \\
-\vec{a}_{m}-
\end{array}\right] B\right)
\end{aligned}
$$

eg:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{lll}
5 & 6 & 7 \\
8 & 9 & 10
\end{array}\right]=\left[\begin{array}{lll}
21 & 24 & 27 \\
47 & 54 & 61
\end{array}\right] \quad(\text { check! })} \\
& A \quad B \\
& A\left[\begin{array}{l}
5 \\
8
\end{array}\right]=\left[\begin{array}{l}
21 \\
47
\end{array}\right], A\left[\begin{array}{l}
6 \\
9
\end{array}\right]=\left[\begin{array}{l}
24 \\
54
\end{array}\right], A\left[\begin{array}{l}
7 \\
10
\end{array}\right]=\left[\begin{array}{l}
27 \\
61
\end{array}\right] \\
& {[1,2] B=[21,24,27]} \\
& {[3,4] B=[47,54,61]}
\end{aligned}
$$

Differentiability of Vector-Valued Functions

$$
\begin{aligned}
& \vec{f}: \Omega \rightarrow \mathbb{R}_{u}^{m},\left(\Omega \subset \mathbb{R}^{n} \text {, open }\right) \\
& \vec{f}(\vec{x})=\left[\begin{array}{c}
f_{1}(\vec{x}) \\
\vdots \\
f_{m}(\vec{x})
\end{array}\right]
\end{aligned}
$$

Supp re $\frac{\partial f_{i}}{\partial x_{j}}(\vec{a})$ exits for each $i=1, \cdots ; m$ \& $j=1, \cdots, n$.

$$
\begin{aligned}
& f_{i}(\vec{x})=f_{i}(\vec{a})+\vec{\nabla} f_{i}(\vec{a}) \cdot(\vec{x}-\vec{a})+\varepsilon_{i}(\vec{x})-(*)_{i}
\end{aligned}
$$

Put all $(*)_{i}$, we have

In the following definitions,

$$
\begin{aligned}
& \text { - } \vec{f}: \Omega \rightarrow \mathbb{R}^{m} \quad\left(\Omega \subset \mathbb{R}^{n}, \text { open }\right) \\
& \text { - } \vec{f}(\vec{x})=\left[\begin{array}{c}
f_{1}(\vec{x}) \\
\vdots \\
f_{m}(\vec{x})
\end{array}\right] \quad(\text { in component form }) \\
& \text { - } \vec{a}=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \in \Omega \\
& \text { - } \vec{x}-\vec{a}=\left[\begin{array}{c}
x_{1}-a_{1} \\
\vdots \\
x_{n}-a_{n}
\end{array}\right]
\end{aligned}
$$

Def Jacobian Matrix of \vec{f} at \vec{a} is defined to be

$$
D \vec{f}(\vec{a})=\left[\begin{array}{c}
-\vec{\nabla} f_{1}(\vec{a})- \\
\vdots \\
-\vec{\nabla} f_{m}(\vec{a})-
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\vec{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\vec{a}) \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\vec{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\vec{a})
\end{array}\right]
$$

(a mxn-matix)

Def Linearization of \vec{f} at \vec{a} is defined to be

$$
\vec{L}(\vec{x})=\vec{f}(\vec{a})+D \vec{f}(\vec{a})(\vec{x}-\vec{a})
$$

$\tau_{\text {matrix multiplication }}$

Def: \vec{f} is said to be differentiable at $\vec{a} \in \Omega$,
if $\left\{\begin{array}{l}\cdot \frac{\partial f_{i}}{\partial x_{j}}(\vec{a}) \text { exiets } \forall i=1, ; m \& j=1, \cdots n \\ \text { - Erren term of the limear approximation }\end{array}\right.$

$$
\vec{\varepsilon}(\vec{x})=\vec{f}(\vec{x})-\vec{L}(\vec{x})
$$

satiofies

$$
\lim _{\vec{x} \rightarrow \vec{a}} \frac{\|\vec{k}(\vec{x})\|}{\|\vec{x}-\vec{a}\|}=0 .
$$

Remartes (1) $[D \vec{f}(\vec{a})]_{i j} \quad(i j$-entry of $D \vec{f}(\vec{a}))$

$$
=\frac{\partial f_{i}}{\partial x_{j}}(\vec{a})
$$

(2) $\vec{f}(\vec{x})=\vec{f}(\vec{a})+D \vec{f}(\vec{a})(\vec{x}-\vec{a})+\vec{\varepsilon}(\vec{x})$

(3) If f is real-valued $(m=1)$, then

$$
D f(\vec{a})=\vec{\nabla} f(\vec{a}) \quad((1 \times n)-\text { matrix })
$$

(4) $\|\vec{\xi}(\vec{x})\| \&\|\vec{x}-\vec{a}\|$ are length in $\mathbb{R}^{m} \& \mathbb{R}^{n}$ respectively.
(5) $\lim _{\vec{x} \rightarrow \vec{a}} \frac{\|\vec{\varepsilon}(\vec{x})\|}{\|\vec{x}-\vec{a}\|}=0 \Leftrightarrow \lim _{\vec{x} \rightarrow \vec{a}} \frac{\left|\varepsilon_{i}(\vec{x})\right|}{\|\vec{x}-\vec{a}\|}=0$

Hence
\vec{f} is differentiable at $\vec{a} \Leftrightarrow f_{i}$ is differentiable at $\vec{a}, \forall i=1 ; ; m$

Approximation:

$$
\begin{aligned}
& \vec{f}(\vec{x}) \approx \vec{L}(\vec{x})=\vec{f}(\vec{a})+D \vec{f}(\vec{a})(\vec{x}-\vec{a}) \\
& \Rightarrow \underbrace{\vec{f}(\vec{x})-\vec{f}(\vec{a})}_{\vec{\rightharpoonup}} \approx \underbrace{D \vec{f}(\vec{a})}_{\uparrow}(\underbrace{(\vec{x}-\vec{a})}_{\Delta \vec{x}=c} \\
& \Delta \vec{f}=\text { change } \underset{\text { of }}{\substack{\hat{f}}} \begin{array}{c}
\text { Jacobian } \\
\text { matrix }
\end{array} \quad \Delta \vec{x}=\text { change } \dot{m} \vec{x} \text {. }
\end{aligned}
$$

Notation: $\quad d \vec{f}=D \vec{f}(\vec{a})(\vec{x}-\vec{a})$ approximated change of f

$$
\text { ie. } \quad \Delta \vec{f} \simeq d \vec{f}
$$ (total differential)

eg:

$$
\begin{aligned}
\vec{f}(x, y) & =\left((y+1) \ln x, x^{2}-\sin y+1\right) \\
& =\binom{(y+1) \ln x}{x^{2}-\sin y+1}=\binom{f_{1}(x, y)}{f_{2}(x, y)} \quad\binom{\text { Rewrite as }}{\text { coleman vecta }}
\end{aligned}
$$

(1) Find $D \vec{f}(1,0)$
(2) Approximate $\vec{f}(0.9,0.1)$

Solu:

$$
\begin{aligned}
D \vec{f}(x, y) & =\left[\begin{array}{c}
-\vec{\nabla} f_{1}- \\
-\vec{\nabla} f_{2}-
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{y+1}{x} & \ln x \\
2 x & -\cos y
\end{array}\right] \\
\therefore D \vec{f}(1,0) & =\left[\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right]
\end{aligned}
$$

(2)

$$
\begin{aligned}
\vec{L}(x, y) & =\vec{f}(1,0)+D \vec{f}(1,0)\left[\begin{array}{c}
x-1 \\
y-0
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
2
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{c}
x-1 \\
y
\end{array}\right] \\
\vec{f}(0.9,0.1) & \simeq \vec{L}(0.9,0.1) \\
& =\left[\begin{array}{l}
0 \\
2
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{c}
0.9-1 \\
0.1
\end{array}\right] \\
& =\left[\begin{array}{c}
-0.1 \\
1.7
\end{array}\right] \underbrace{}_{d \vec{f}} \Delta \vec{x}=d \vec{x}
\end{aligned}
$$

