Remark : $D_{\hat{u}}f(\hat{a})$ can be defined for any vector \vec{v} , not necessary $||\vec{v}||=1$ and could be \hat{o} , by the same definition

$$D_{\vec{v}}f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a}+t\vec{v}) - f(\vec{a})}{t}$$

One can show that

Show that

$$D_{\vec{v}}f(\vec{a}) = \begin{cases} \|\vec{v}\| \ D_{\vec{v}}f(\vec{a}), \quad \vec{v} \ \vec{v} \neq \vec{o} \\ 0, \quad \vec{v} \ \vec{v} = \vec{o} \end{cases}$$

and that

$$D_{U}^{+}f(\tilde{\alpha}) = \nabla f(\tilde{\alpha}) \cdot \tilde{U}$$
 if $f(\tilde{\omega}) differentiable at \tilde{\alpha}$
(not true in general, if $f(\tilde{\omega})$ not differentiable)
eg $f(x,y) = J(xy)$ at (0,0)

Properties of Gradient.
If
$$j \cdot f, g: \Omega \Rightarrow \mathbb{R}$$
 $(\Omega \in \mathbb{R}^n, \text{open})$ are differentiable,
 $l \cdot C \Rightarrow a \text{ constant},$
then
 $(1) \quad \overline{\nabla}(f \pm g) = \overline{\nabla}f \pm \overline{\nabla}g,$
 $(2) \quad \overline{\nabla}(cf) = c\overline{\nabla}f$
 $(3) \quad \overline{\nabla}(fg) = g\overline{\nabla}f + f\overline{\nabla}g$
 $(4) \quad \overline{\nabla}(\frac{f}{g}) = \frac{g\overline{\nabla}f - f\overline{\nabla}g}{g^2}$ provided $g \neq 0$
 $(Pf = \text{Easily from properties of partial derivatives})$

suppose rule) is any countrable on SC. Then rule
total differential of f at
$$\vec{a}$$
 is defined to be
the (funnal) expression:
 $df = \sum_{\vec{a}=1}^{n} \frac{\partial f}{\partial X_{\hat{c}}}(\vec{a}) dX_{\hat{c}}$

$$dV = \frac{\partial V}{\partial r} dr + \frac{\partial V}{\partial h} dh$$
$$= 2\pi r h dr + \pi r^2 dh$$

For application :
Suppose we want to approximate the change of V
when
$$(r, tr)$$
 changes $(r, tr) = (3, 12)$ to
 $(3+0.08, 12-0.3)$
Then let $dr = \Delta r = 0.08$
 $dt = \Delta t = -0.3$

we have AV

$$SV \approx dV = 2\pi r f_{1} dr + \pi r^{2} df_{1} (at r=3, f_{1}=12)$$

= $2\pi \cdot 3 \cdot 12 \cdot 0.08 + \pi (3)^{2} (-0.3)$
= $3.06 \pi \approx 9.61$.

Properties of Total Differential
If
$$f, g: \Omega \rightarrow R$$
 ($JZ \subseteq R$), open) are differentiable, and
 $f \in GR$ is a constant.
Then
(1) $d(f\pm g) = df \pm dg$,
(2) $d(cf) = cdf$
(3) $d(fg) = gdf + fdg$
(4) $d(\frac{f}{g}) = \frac{gdf - fdg}{g^2}$ provided $g \neq 0$
(Pf = Easily from properties of partial derivatives)

Summary (on differentiation of a real-valued function on
$$\mathbb{R}^n$$
)
 $f:\mathbb{R}^n \rightarrow \mathbb{R}$

A. Types of differentiations (derivatives)
• Directional Derivative:

$$D_{\vec{u}}f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a}+t\vec{u}) - f(\vec{a})}{t}$$
 ($\|\vec{u}\|=1$)

• Partial derivatives:

$$\frac{\partial f}{\partial x_{i}}(\vec{a}) = D_{\vec{e}_{i}}f(\vec{a}), \quad \vec{e}_{i} = (0, \dots, 1, \dots, 0)$$

$$T_{ith component}.$$

• Gradient

$$\vec{\nabla} f(\vec{\alpha}) = \left(\frac{\partial f}{\partial x_{l}}(\vec{\alpha}), \cdots, \frac{\partial f}{\partial x_{n}}(\vec{\alpha})\right)$$

• Total Differential

$$df = \sum_{\bar{a}=i}^{n} \frac{\partial f}{\partial x_{\bar{a}}}(\bar{a}) dx_{\bar{c}}$$

 $\frac{\text{Higher Derivatives}}{\frac{\partial^{k_1+\cdots+k_n} f}{\partial x_1^{k_1}\cdots \partial x_n^{k_n}}}(\vec{\alpha})$ • (provided f is C^k, k=k1+...+kn) t all portial dorivatives up to order k exist and cartinuous.

- B. Linear approximation
 - $L(\vec{x}) = f(\vec{a}) + \vec{\nabla} f(\vec{a}) \cdot (\vec{x} \vec{a})$

•
$$f(\vec{x}) = L(\vec{x}) + E(\vec{x})$$

~ erra term

• f is differentiable at
$$\overline{a}$$

 $\iff \lim_{\overline{x} \to \overline{a}} \frac{|\mathcal{E}(\overline{x})|}{||\overline{x} - \overline{a}||} = 0$

In this case, $df \simeq \Delta f$ (by identifying $dx_i = \Delta x_i$)

$$\frac{Countex examples:}{\underline{eg1}: f = R \Rightarrow R} \qquad (in MATH2050)$$

$$f(x) = \begin{cases} x^{2}ain \frac{1}{x} & if x \neq 0 \\ 0 & if x = 0 \end{cases}$$

$$f is \underline{differentiable} \quad on R \quad but$$

$$f(x) is \underline{not} (artinums) \quad at x = 0$$

$$Saurilarly \quad g(x) = x^{2k-2} f(x) \quad is k-time \quad differentiable$$

$$but \quad g^{(k)}(x) \quad is not (artinums) \quad at x = 0.$$
Hence k -time differentiable $\not \Rightarrow C^{k}$

In particular,
$$C^{k-1} \not\models C^{k}$$

(For multivariable : $f_{i}(\vec{x}) = f_{i}(x_{i}, x_{n}) = g(x_{i})$,)

$$\underbrace{0}_{\underline{y}} = \begin{cases} \frac{xy^2}{x^2 + y^4} & i \\ 0 & i \\ 0 & i \\ x^2 + y^2 = 0 \end{cases}$$

$$D_{\hat{u}}f(0,0)$$
 exiets, \forall unit vector $\hat{u} \in \mathbb{R}^2$
but f is not continuous at $(0,0)$ (check!)

$$g_3: f(x,y) = |x+y|$$
 is continuous on \mathbb{R}^2 but
 $f_x(0,0), f_y(0,0)$ DNE. (Check!)

$$eq 4 : f(X,Y) = \int |XY|$$

$$f_{x}(0,0), f_{y}(0,0) excet (\hat{u} fact = 0)$$

but $D_{\vec{u}}f(0,0) DNE fa \hat{u} = \pm \overline{e_{r}}, \pm \overline{e_{z}}$
(Check!)

Review: Matrix Multiplication
Let
$$A = \begin{bmatrix} a_{11} \cdots a_{1n} \\ \vdots \\ a_{m1} \cdots a_{mn} \end{bmatrix}$$
 be an mxn-matric
 $= \begin{bmatrix} -\vec{a}_1 - \\ \vdots \\ -\vec{a}_m - \end{bmatrix}$ where $\vec{a}_2 = (a_{i2}, \cdots a_{in}) \in \mathbb{R}^n$
If $b = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} 1 \\ b \end{bmatrix}$ be a nx1-matric regarded
as a column vector in \mathbb{R}^n .
Then (matrix multiplication)
 $Ab = \begin{bmatrix} a_{11} \cdots a_{1n} \\ \vdots \\ a_{m1} \cdots a_{mn} \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} -\vec{a}_1 - \\ \vdots \\ -\vec{a}_m - \end{bmatrix} \begin{bmatrix} 1 \\ b \\ 1 \end{bmatrix}$
 $= \begin{bmatrix} a_{11}b_1 \cdots a_{1n} \\ \vdots \\ a_{m1}b_1 \cdots a_{mn} \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} -\vec{a}_1 - \\ \vdots \\ -\vec{a}_m - \end{bmatrix} \begin{bmatrix} 1 \\ b \\ 1 \end{bmatrix}$
 $= \begin{bmatrix} a_{11}b_1 \cdots a_{mn} \\ \vdots \\ a_{m1}b_1 \cdots a_{mn} \end{bmatrix} = \begin{bmatrix} \vec{a}_1 \cdot \vec{b} \\ \vdots \\ \vec{a}_m \cdot \vec{b} \end{bmatrix}$ (result
 $= nx_1 \cdot matrix$
 $= column m-vector.$)
Subilarly, for nultiplication of (1xn) s (nxk) matrixes
 $I - \vec{a} - J \begin{bmatrix} 1 \\ b_1 \cdots b_n \\ 1 \end{bmatrix}$ ($\vec{a}, \vec{b}_{12} \cdots \vec{b}_n \in \mathbb{R}^n$)
 $= \begin{bmatrix} \vec{a} \cdot \vec{b}_1, \cdots, \vec{a} \cdot \vec{b}_n \end{bmatrix}$ ($\vec{a}, \vec{b}_{12} \cdots \vec{b}_n \in \mathbb{R}^n$)
 $= \begin{bmatrix} \vec{a} \cdot \vec{b}_1, \cdots, \vec{a} \cdot \vec{b}_n \end{bmatrix}$ (result = (xk - matrix = ross k-vector.)

In general :
$$(M \times N) + \overline{u}_{kes} (N \times k)$$

$$AB = \begin{bmatrix} -\vec{a}_{1} \\ -\vec{a}_{M} - \end{bmatrix} \begin{bmatrix} 1 \\ \vec{b}_{1} \\ -\vec{b}_{k} \end{bmatrix} \begin{pmatrix} \vec{a}_{1} \\ \vec{b}_{1} \\ -\vec{b}_{k} \\ -\vec{a}_{M} \\ -\vec{b}_{1} \\ -\vec{a}_{M} \\ -\vec{b}_{k} \\ -\vec{a}_{M} \\ -\vec{b}_{k} \end{bmatrix}$$

$$= \begin{bmatrix} \vec{a}_{1} \\ \vec{b}_{1} \\ -\vec{a}_{1} \\ -$$

<u>e</u>g :

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} = \begin{bmatrix} 21 & 24 & 27 \\ 47 & 54 & 61 \end{bmatrix} \quad (deck!)$$

$$A \qquad B$$

$$A \begin{bmatrix} 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 21 \\ 47 \end{bmatrix}, \quad A \begin{bmatrix} 6 \\ 9 \end{bmatrix} = \begin{bmatrix} 24 \\ 54 \end{bmatrix}, \quad A \begin{bmatrix} 7 \\ 10 \end{bmatrix} = \begin{bmatrix} 27 \\ 61 \end{bmatrix}$$

$$\Box, 2 \exists B = \begin{bmatrix} 21 \\ 24 \\ 24 \end{bmatrix}, \quad 24 \\ 27 \end{bmatrix}$$

$$I = \begin{bmatrix} 3, 43B \\ 3 \end{bmatrix} = \begin{bmatrix} 27 \\ 47 \\ 54 \end{bmatrix}, \quad 54 \\ 61 \end{bmatrix}$$

 $\frac{\text{Differentiability of Vector-Valued Functions}}{\vec{f}: \mathcal{R} \to \mathbb{R}^{m}}, (\mathcal{R} \subset \mathbb{R}^{n}, \text{ open })$ $\vec{f}(\vec{x}) = \begin{bmatrix} f_{1}(\vec{x}) \\ \vdots \\ f_{m}(\vec{x}) \end{bmatrix}$

Suppose $\frac{2f_i}{2x_j}(\vec{a})$ exists for each $\vec{a}=1,\dots,m$ a $\vec{j}=1,\dots,m$.

$$f_{\bar{i}}(\bar{x}) = f_{\bar{i}}(\bar{a}) + \sqrt{f_{\bar{i}}(a)} \cdot (\bar{x} - \bar{a}) + \varepsilon_{\bar{i}}(x) - (\bar{x})_{\bar{i}}(x)$$

$$(|x|) \quad (|x|) \quad$$

In the following definitions,
•
$$\vec{f} : \Omega \to \mathbb{R}^{m}$$
 ($\Omega \in \mathbb{R}^{n}$, open)
• $\vec{f}(\vec{x}) = \begin{bmatrix} f_{1}(\vec{x}) \\ \vdots \\ f_{m}(\vec{x}) \end{bmatrix}$ (in component form)
• $\vec{a} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix} \in \Omega$
• $\vec{a} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix} \in \Omega$

Def Linearization of
$$\vec{f}$$
 at \vec{a} is defined to be
 $\vec{L}(\vec{x}) = \vec{f}(\vec{a}) + D\vec{f}(\vec{a})(\vec{x}-\vec{a})$
Tratrix multiplication

Def:
$$\vec{f}$$
 is said to be differentiable at $\vec{a} \in SZ$,
 $\vec{v}_{j} \cdot \frac{\partial f_{i}}{\partial x_{j}}(\vec{a})$ exists $\forall i=j \cdot ; m < j=j \cdot ; n$
• Even term of the linear approximation
 $\vec{E}(\vec{x}) = \vec{f}(\vec{x}) - \vec{L}(\vec{x})$
satisfies
 $\lim_{\vec{x} \to \vec{a}} \frac{\|\vec{E}(\vec{x})\|}{\|\vec{x} - \vec{a}\|} = 0$

Remarks (1)
$$\left[D\vec{f}(\vec{a}) \right]_{ij}$$
 (ij-entry of $D\vec{f}(\vec{a})$)

$$= \frac{\partial fi}{\partial x_{j}}(\vec{a})$$
(2) $\vec{f}(\vec{x}) = \vec{f}(\vec{a}) + D\vec{f}(\vec{a})(\vec{x}-\vec{a}) + \vec{E}(\vec{x})$
column column maxin column iolumn
m-vecta maxix n-wedta m-vecta
$$\uparrow \qquad \uparrow \qquad \uparrow \qquad (mxn) \cdot (nx1) \qquad mx1 \qquad (matrix)$$
(3) $\vec{i}f = \vec{b}$ real-valued $(m = 1)$, then
 $Df(\vec{a}) = \vec{\nabla}f(\vec{a}) \qquad ((1 \times n) - matrix)$
(4) $||\vec{E}(\vec{x})|| \approx ||\vec{x}-\vec{a}||$ are length in $\mathbb{R}^{m} \approx |\mathbb{R}^{n}$ respectively.

$$(5) \lim_{\vec{x} \to \vec{a}} \frac{\|\vec{\hat{\epsilon}}(\vec{x})\|}{\|\vec{x} - \vec{a}\|} = 0 \iff \lim_{\vec{x} \to \vec{a}} \frac{|\epsilon_{\hat{\iota}}(\vec{x})|}{\|\vec{x} - \vec{a}\|} = 0$$

Hence

$$\vec{f}$$
 is differentiable at $\vec{a} \Leftrightarrow f_i$ is differentiable at \vec{a} , $\forall i=1,..., m$

$$\begin{aligned} \mathcal{L}_{j} &: \quad \vec{f}(X,y) = \left((y+1) \cdot lu X , \quad \chi^{2} - \omega \tilde{u}y + 1 \right) \\ &= \left(\begin{pmatrix} (y+1) \cdot lu X , \\ \chi^{2} - \omega \tilde{u}y + 1 \end{pmatrix} \right) = \left(\begin{pmatrix} f_{1}(X,y) \\ f_{2}(X,y) \end{pmatrix} \right) \\ \begin{aligned} & \left(\begin{array}{c} \text{Rewrite as} \\ \text{Column vecta} \end{array} \right) \\ & \text{Column vecta} \end{aligned}$$

(1) Find
$$D\vec{f}(1,0)$$

(2) Approximate $\vec{f}(0.9, 0.1)$
Selu: $D\vec{f}(X,Y) = \begin{bmatrix} -\nabla f_1 - \\ -\nabla f_2 - \end{bmatrix} = \begin{bmatrix} \frac{2}{9}f_1 & \frac{2}{9}f_1 \\ \frac{2}{9}f_2 & \frac{2}{9}f_2 \\ \frac{2}{9}f_2 & \frac{2}{9}f_2 \end{bmatrix}$
 $= \begin{bmatrix} \frac{9+1}{x} & \ln x \\ 2x & -\cos y \end{bmatrix}$
 $\therefore D\vec{f}(1,0) = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$
(2) $\vec{L}(X,Y) = \vec{f}(1,0) + D\vec{f}(1,0) \cdot \begin{bmatrix} X-1 \\ Y-0 \end{bmatrix}$
 $= \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} X-1 \\ Y \end{bmatrix}$

$$\vec{f}(0.9, 0.1) \simeq \vec{l}(0.9, 0.1)$$

$$= \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 0.9 & -1 \\ 0.1 \end{bmatrix}$$

$$= \begin{bmatrix} -0.1 \\ 1.7 \end{bmatrix} \qquad d\vec{f}$$