$$((at'd) (b) (of eg 1):$$

 $(In a sense (1, 1, 9) \approx (1, 2))$

$$\begin{aligned} f(1,1,1,9) &\approx L(1,1,1,9) \\ &= 2 + 4(1,1-1) + (1,9-2) \\ &= 2 + 4 \times 0.1 + (-0,1) \\ &= 2.3 \end{aligned}$$

(c) The equation of the
tangent plane of
$$Z = f(x,y)$$

at the point $(x,y) = (1,2)$
 $Z = L(x,y)$
 $Z = L(x,y)$
 $Z = 4(x-1) + (y-2)$
i.e. $Z = 4x+y-4$
 $(4x+y-z=4)$

$$\frac{\text{eg. Is}}{\frac{5}{3}} \int f(x,y) = \int IxyI \quad \text{differentiable at } (0,0)^{2}.$$

$$\frac{5\text{oh}}{\frac{5}{3}} (0,0) = \lim_{R \to 0} \frac{f(R,0) - f(0,0)}{R} = \lim_{R \to 0} \frac{0-0}{R} = 0$$

$$\frac{2f}{3} (0,0) = \cdots = 0 \quad (\text{Similarly}! = x!)$$

Linuarization
$$L(X, y) = f(0, 0) + \frac{2\xi}{2\chi}(0, 0)(X-0) + \frac{2\xi}{2y}(0, 0)(y-0)$$

 $= 0 + 0 \cdot x + 0 \cdot y$
 $\equiv 0$ (is the zero function)
Error term $E(X, y) = f(X, y) - L(X, y)$
 $= f(X, y) = J[Xy]$.
Lini $\frac{|E(X, y)|}{|(Xy)-(0,0)||} = \lim_{(Xy)\rightarrow(0,0)} \frac{J[Xy]}{\sqrt{x^2+y^2}}$
 $= \lim_{Y \rightarrow 0} \frac{J[Y]}{Y} \frac{1}{(2000 \text{ Aline})|} = \lim_{Y \rightarrow 0} \int \frac{J(2000 \text{ Aline})}{\sqrt{x^2+y^2}}$
 $= \lim_{Y \rightarrow 0} \frac{J[Y]}{Y} \frac{1}{(2000 \text{ Aline})|} = \lim_{Y \rightarrow 0} \int \frac{J(2000 \text{ Aline})|}{\sqrt{x^2+y^2}}$
 $= \lim_{Y \rightarrow 0} \frac{J[Y]}{Y} \frac{1}{(2000 \text{ Aline})|} = \lim_{Y \rightarrow 0} \int \frac{J(2000 \text{ Aline})|}{\sqrt{x^2+y^2}}$
 $= \lim_{Y \rightarrow 0} \frac{J[Y]}{Y} \frac{1}{(2000 \text{ Aline})|} = \lim_{Y \rightarrow 0} \int \frac{J(2000 \text{ Aline})|}{\sqrt{x^2+y^2}}$
 $= \lim_{Y \rightarrow 0} \frac{J[Y]}{Y} \frac{1}{(2000 \text{ Aline})|} = \lim_{Y \rightarrow 0} \int \frac{J(2000 \text{ Aline})|}{\sqrt{x^2+y^2}}$
 $\lim_{X \rightarrow 0} \frac{J(2000 \text{ Aline})|}{\sqrt{x^2+y^2}} = \lim_{Y \rightarrow 0} \frac{J(2000 \text{ Aline})|}{\sqrt{x^2+y^2}}$
 $\lim_{X \rightarrow 0} \frac{J(Xy)}{Y} \frac{J($

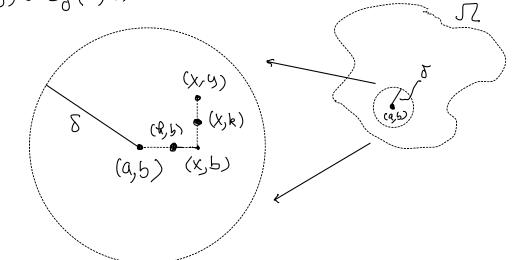
 $\left(\begin{array}{c} Note: "Differentiability" \Rightarrow we call approximate all (infinity many) directions \\ by information along x e y direction (X1,...,Xn) \\ \end{array}\right)$

$$\begin{array}{rcl} \underline{\text{Thm}} & \text{If } f(\vec{x}) & \tilde{\mathbf{o}} & \underline{\text{differentiable}} & \text{at } \vec{a}, & \text{then} \\ & f(\vec{x}) & \tilde{\mathbf{o}} & \underline{\text{continuous}} & \text{at } \vec{a}. \\ \underline{Pf}: & f(\vec{x}) = L(\vec{x}) + \mathcal{E}(\vec{x}) & \tilde{\mathbf{v}} & \text{differentiable} & \Leftrightarrow & \underline{luu} & \underline{|\mathcal{E}(\vec{x})|} \\ & = f(\vec{a}) + \sum_{\vec{x}=1}^{n} & \frac{\partial f}{\partial X_{\vec{i}}}(\vec{a}) (X_{\vec{c}} - u_{\vec{c}}) & + \mathcal{E}(\vec{x}) \\ \Rightarrow & |f(\vec{x}) - f(\vec{u})| \leq \left| \sum_{\vec{x}=1}^{n} & \frac{\partial f}{\partial X_{\vec{i}}}(\vec{a}) (X_{\vec{c}} - u_{\vec{c}}) \right| + \left| \mathcal{E}(\vec{x}) \right| & (\text{Triangle line};) \\ & (\text{Causely schwarg.}) \leq \left(\int_{\left(\frac{\partial f}{\partial X_{\vec{i}}}(\vec{a})\right)^2} + & \frac{|\mathcal{E}(\vec{x})|}{||\vec{x} - \vec{a}||} \right) \cdot ||\vec{x} - \vec{a}|| \\ & \longrightarrow & 0 & \text{by Squeeze Thom & Differentiability} \\ \end{array}$$

A sufficient condition for differentiability:

The Let
$$\Sigma \subseteq \mathbb{R}^n$$
 be open, f be C on Σ , then
 f is differentiable on Σ

(The assumption requires all $\frac{25}{3\chi_c}$ exist on SZ, not just at a single pt. \vec{a}) Pf: (We prove it for 2-voniables, sinclar proof for general case) Suppose $(a,b) \in SZ \in let B_{S}((a,b)) \in SZ$. For any $(\chi, y) \in B_{S}((a,b))$



$$f(x,y) - f(a,b) = f(x,y) - f(x,b) + f(x,b) - f(a,b)$$

$$(by \text{ Nean Value Thm}) = f_y(x,k)(y-b) + f_x(t,b)(x-a)$$
where k between $y \neq b$ and the between $x \neq a$

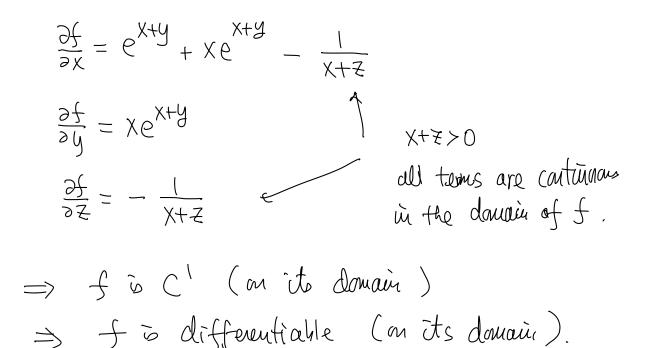
$$\frac{|\xi(x,y)|}{\|(x,y)-(a,b)\|} = \frac{|f(x,y)-f(a,b)-f_{x}(a,b)(x-a)-f_{y}(a,b)(y-b)|}{\|(x,y)-(a,b)\|}$$

$$= \frac{\left| \int_{g} (x_{j,k}) (y_{-} b) + \int_{x} (x_{j,k}) (x_{-}a) - \int_{x} (y_{j,k}) (x_{-}a) - \int_{y} (y_{j,k}) (y_{-}b) \right|}{\|(x_{j,y}) - (y_{k,k})\|} \\ = \frac{\left| \left[\int_{x} (x_{j,k}) - \int_{x} (y_{j,k}) \right] (x_{-}a) + \left[\int_{y} (x_{j,k}) - \int_{y} (y_{j,k}) \right] (y_{-}b) \right|}{\|(x_{j,y}) - (a_{j,k})\|} \\ \leq \frac{\left| \left(\int_{x} (x_{j,k}) - \int_{x} (y_{j,k}) \right)^{2} + \left(\int_{y} (x_{j,k}) - \int_{y} (y_{j,k}) \right)^{2} \right] (x_{-}a)^{2} + (y_{-}b)^{2}}{\|(x_{j,y}) - (a_{j,k})\|} \\ = \frac{\left| \left(\int_{x} (x_{j,k}) - \int_{x} (y_{j,k}) \right)^{2} + \left(\int_{y} (x_{j,k}) - \int_{y} (y_{j,k}) \right)^{2} \right] (x_{-}a)^{2} + (y_{-}b)^{2}}{\|(x_{j,y}) - (a_{j,k})\|} \\ = \frac{\left| \left(\int_{x} (x_{j,k}) - \int_{x} (y_{j,k}) \right)^{2} + \left(\int_{y} (x_{j,k}) - \int_{y} (y_{j,k}) \right)^{2} \right|}{\|(x_{j,y}) - (a_{j,k})\|} \\ = \frac{\left| \left(\int_{x} (x_{j,k}) - \int_{x} (y_{j,k}) \right)^{2} + \left(\int_{y} (x_{j,k}) - \int_{y} (y_{j,k}) \right)^{2} \right|}{\|(x_{j,y}) - (a_{j,k})\|} \\ = \frac{\left| \left(\int_{x} (x_{j,k}) - \int_{x} (y_{j,k}) \right)^{2} + \left(\int_{y} (x_{j,k}) - \int_{y} (y_{j,k}) \right)^{2} \right|}{\|(x_{j,y}) - (a_{j,k})\|} \\ = \frac{\left| \int_{x} (x_{j,k}) - \int_{x} (y_{j,k}) - \int_{x} (y_{j,k}) - \int_{y} (y_{j,k}) \right|}{\|(x_{j,y}) - (a_{j,k})\|} \\ = \frac{\left| \int_{x} (x_{j,k}) - \int_{x} (y_{j,k}) - \int_{x} (y_{j,k}) - \int_{y} (y_{j,k}$$

(5) If
$$f(\vec{x})$$
 is differentiable, then
 $e^{f(\vec{x})}$, $\sin(f(\vec{x}))$, $\cos(f(\vec{x}))$ are differentiable.
And $\ln(f(\vec{x}))$ when $f(\vec{x}) > 0$
 $\int f(\vec{x})$ when $f(\vec{x}) > 0$
 $|f(\vec{x})|$ when $f(\vec{x}) \neq 0$
 $\ln|f(\vec{x})|$ when $f(\vec{x}) \neq 0$
 $\ln|f(\vec{x})|$ when $f(\vec{x}) \neq 0$
 $\ln |f(\vec{x})|$ when $f(\vec{x}) \neq 0$
 $\ln (f(\vec{x}) + 0)$
 $\ln (f(\vec{x}))|$ is differentiable in
 $\ln (1 + \cos(x^2y))|$ the down of definition

eq:
$$f(x,y,z) = xe^{x+y} - ln(x+z) (= xe^{x+y} - log(x+z))$$

Domain of $f = f(x,y,z) \in \mathbb{R}^3 = x+z > 0$ § is open



Gradient and Directional Derivative

Def: let
$$f: \Omega \to \mathbb{R}$$
, $(\Omega \in \mathbb{R}^{n}, \operatorname{open})$
 $\overline{a} \in \Omega$
Then the gradient vector of f at \overline{a} is defined to be
 $\overline{\nabla}f(\overline{a}) = \left(\stackrel{\geq f}{\Rightarrow x_{1}}(\overline{a}), \dots, \stackrel{\geq f}{\Rightarrow x_{n}}(\overline{a}) \right)$

<u>Remark</u>: Using $\overrightarrow{\nabla}f$, linearization of f at $\overrightarrow{\alpha}$ can be written as

$$L(\vec{x}) = f(\vec{a}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\hat{a})(x_i - a_i)$$
$$= f(\vec{a}) + \vec{\nabla} f(\vec{a}) \cdot (\vec{x} - \vec{a})$$

$$\underline{eg}: f(x,y) = x^{2} + z \times y$$

$$\underbrace{\Im f}_{\partial X} = z \times + z \times y, \quad \underbrace{\Im f}_{\partial Y} = z \times$$

$$\therefore \quad \overline{\nabla}f(x,y) = (\underbrace{\Im f}_{\partial X}, \underbrace{\Im f}_{\partial Y}) = (2x + z \times, z \times)$$

$$(\underline{y}: \quad \overline{\nabla}f(1, z) = (6, z))$$

Thus Suppose
$$f$$
 is differentiable at \vec{a} .
Let \vec{u} be a unit vector $\vec{u} \in \mathbb{R}^n$, then
 $D_{\vec{u}}f(\vec{a}) = \vec{\nabla}f(\vec{a}) \cdot \vec{u}$

eg: let
$$f(x,y) = \overline{sur}(\frac{x}{y})$$
.
Find the rate of change of f at $(1, \overline{z})$ in the direction of $\overline{V} = (1, -1)$ (not necessary unit).

$$\frac{\text{Remark}}{\text{the direction of } \vec{V}} \text{ is } \vec{V} = \vec$$

 $Pf: (Differentiable \Rightarrow Diff(a) = \overline{\nabla}f(a) \cdot \overline{U})$ let L(x) be linearization of f(x) at a. $g = \frac{1}{2} \left(\vec{x} \right) = \lfloor (\vec{x}) + \xi(\vec{x}) \rfloor$ $= f(\vec{a}) + \vec{\nabla} f(\vec{a}) \cdot (\vec{x} - \vec{a}) + \epsilon(\vec{x})$ with $\frac{|\xi(\vec{x})|}{\|\vec{x}-\vec{\alpha}\|} \rightarrow 0$ as $\vec{x} \rightarrow \vec{\alpha}$. Put $\dot{x} = \hat{a} + t \hat{u}$, we have $f(\vec{a}+t\vec{u}) - f(\vec{a}) = \vec{\nabla}f(\vec{a}) \cdot (t\vec{u}) + E(\vec{a}+t\vec{u})$ $= \pm \left(\vec{\nabla} f(\vec{\alpha}) \cdot \vec{u} \right) + \varepsilon(\vec{\alpha} + t\vec{u})$ $\frac{f(\bar{u}+t\bar{u})-f(\bar{u})}{t} = \overline{v}f(\bar{u})\cdot\overline{u} + \frac{E(\bar{u}+t\bar{u})}{t}$ $\left|\frac{\varepsilon(\hat{a}+t\hat{u})}{t}\right| = \frac{|\varepsilon(\hat{a}+t\hat{u})|}{||\hat{a}+t\hat{u}| - \hat{a}||} \to 0 \quad \text{as} \quad \tilde{a}+t\hat{u} \to \tilde{a}$ $(\hat{c}, t \to 0)$ $\therefore \quad D_{\hat{u}}f(\hat{u}) = \lim_{t \to 0} \frac{f(\hat{u} + t\hat{u}) - f(\hat{a})}{t} = \nabla f(\hat{a}) \cdot \hat{u}$

Geometric Meanings of Gradient $\overline{\nabla}f$

At a point
$$\overline{a}$$
, f increases (decreases) most rapidly
in the direction of $\nabla f(\overline{a})$ ($-\nabla f(\overline{a})$) at a rate
of $\|\nabla f(\overline{a})\|$

 \times