eg of lighter coder derivatives (order $\geqslant 3$)
Previous eg: $f(x, y)=x \sin y+y^{2} e^{2 x}$

$$
\begin{aligned}
\Rightarrow \quad & f_{x y}=\cos y+4 y e^{2 x}=f_{y x} \\
\Rightarrow\left(3^{r d} \text { oder }\right) & f_{x y x}=\left(f_{x y}\right)_{x}=8 y e^{2 x}=\left(f_{y x}\right)_{x}=f_{y x x} \\
& f_{x y y}=\left(f_{x y}\right)_{y}=-\sin y+4 e^{2 x}=\left(f_{y x}\right)_{y}=f_{y x y}
\end{aligned}
$$

$\vdots \quad$ (E_{x} : other 3 rd oder partial deviraticics)
One can calculate simitarly up to any oder

Question Is it always true that $f_{x y}=f_{y x}$?
Answer: No.
Counter example:

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

By defäition,

$$
f_{x y}(0,0)=\left(f_{x}\right)_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f_{x}(0, h)-f_{x}(0,0)}{h}
$$

\therefore we need to calculate the $1^{S T}$ oder partial desiccative $f_{x}(0, h)$ and $f_{x}(0,0)$.

$$
F a(0, h), \quad f_{x}(x, y)=\frac{\partial}{\partial x}\left(\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}\right)
$$

$$
\begin{aligned}
& =\frac{\left(x^{2}+y^{2}\right)\left(3 x^{2} y-y^{3}\right)-x y\left(x^{2}-y^{2}\right)(2 x)}{\left(x^{2}+y^{2}\right)^{2}} \\
& \begin{aligned}
\Rightarrow f_{x}(0, t)= & \frac{-h^{5}}{h^{4}}=-h \\
F_{n}(0,0), \quad f_{x}(0,0) & =\lim _{k \rightarrow 0} \frac{f(k, 0)-f(0,0)}{k} \\
& =\lim _{k \rightarrow 0} \frac{0-0}{k}=0 \\
\therefore \quad f_{x y}(0,0) & =\lim _{h \rightarrow 0} \frac{f_{x}(0, h)-f_{x}(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h-0}{h}=-1 .
\end{aligned}
\end{aligned}
$$

Similarly, $\quad f_{y x}(0,0)=1 \quad(E x!)$
(In easy way to see this make sense: $f(x, y)=-f(y, x)$)
Hence $f_{x y}(0,0) \neq f_{y x}(0,0)$!
Question: When do we have $f_{x y}=f_{y x}$?
Thm (Clairaut's Tho / Mixed Derivatives This)
Let $f: \Omega \rightarrow \mathbb{R} \quad\left(\Omega \subset \mathbb{R}^{n}\right.$, open $)$
If $f_{x y} \& f_{y x}$ exiet and are continuous on Ω, then

$$
f_{x y}=f_{y x} \text { on } \Omega
$$

Actually, one cal prove a stronger version:

The Let, $\left\{\begin{array}{l}0 f: \Omega \rightarrow \mathbb{R} \quad\left(\Omega \subset \mathbb{R}^{n}, \text { open }\right) \\ \vec{a} \in \Omega\end{array}\right.$

- $\vec{a} \in \Omega$

If, $\left\{\begin{array}{l}f_{x y} \& f_{y x} \text { exiet in an open ball containing } \vec{a} \text {, and } \\ \text { - } f_{x y} \& f_{y x} \text { are contūucus at } \vec{a},\end{array}\right.$
then $\quad f_{x y}(\vec{a})=f_{y x}(\vec{a})$.

Recall Mean Value Thereon for 1-varaible Function
Let $f:[a, b] \rightarrow \mathbb{R},\left\{\begin{array}{l}\text {. continuars on }[a, b] \& \\ \text { - differentiable on }(a, b)\end{array}\right.$
Then $\exists c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Pf of Clairaut's The
We may assume $\vec{a}=(0,0) \in \Omega$ and need to show $f_{x y}(0,0)=f_{y x}(0,0)$.

Let $h, k>0$ and $[0, h] \times[0, k] \subset \Omega$
Refūe $\quad \alpha=f(t, k)-f(0, k)-f(t, 0)+f(0,0)$

Let $g(x)=f(x, k)-f(x, 0), \quad 0 \leqslant x \leqslant h$
Then $\alpha=g(h)-g(0)$

$$
g^{\prime}(x)=f_{x}(x, k)-f_{x}(x, 0)
$$

Mean Value Chm $\Rightarrow \exists h_{1} \in(0, \theta)$ such that

$$
\frac{g(h)-g(0)}{h}=g^{\prime}\left(h_{1}\right)
$$

ie.

$$
\begin{aligned}
& \frac{\alpha}{h}=f_{x}(h, k)-f_{x}(h, 0) \\
& \alpha=h\left[f_{x}(h, k)-f_{x}\left(h_{1}, 0\right)\right]
\end{aligned}
$$

Mean Value Thu again $\Rightarrow \exists k, \in(0, k)$ such that

$$
\frac{f_{x}\left(k_{1}, k\right)-f_{x}\left(t_{1}, 0\right)}{k}=\left(f_{x}\right)\left(t_{1}, k_{1}\right)
$$

$$
\therefore \quad \alpha=h k f_{x y}\left(h_{1}, k_{1}\right)
$$

Süiliarly, $\exists\left(h_{2}, k_{2}\right) \in(0, h) \times(0, k)$ such that (Ex!)

$$
\begin{aligned}
& \left.\quad \alpha=h k f_{y x}\left(h_{2}, k_{2}\right) \quad \begin{array}{c}
\text { (By uitencloungugg the } \\
\text { vole of } x 2 y
\end{array}\right) \\
& \therefore \quad f_{x y}\left(h_{1}, k_{1}\right)=f_{y x}\left(h_{2}, k_{2}\right)
\end{aligned}
$$

Letting $h, k \rightarrow 0^{+} \Rightarrow h_{1}, k_{1} \rightarrow 0 \quad \& \quad h_{2}, k_{2} \rightarrow 0$
$\therefore \quad f_{x y}(0,0)=f_{y x}(0,0)$ since $f_{x y} \& f_{y x}$ are contūucus at $\vec{a}=(0,0)$.

Def Let $f: \Omega \rightarrow \mathbb{R} \quad\left(\Omega \subseteq \mathbb{R}^{n}\right.$, open $)$
Then : f is called a c^{k} function if all pontial derivatives of f up to order k exist and are continuces on Ω

- f is called a $C^{C^{b}}$ function if f is c^{k} for all $k \geqslant 0$.
egs: (1) If f is contūcaus (0 -nader partial derivative) then f is C^{0}.
(2) If f is C^{2}, then $f, f_{x}, f_{y}, f_{x x}, f_{x y}=f_{y x}, f_{y y}$ exist \& are all cantunuas. (byclainant's)
(3) Polynomials, Rational functions, exponential, logarithm, trigonometric functions are C^{∞} function on their domains of defaicition. \& hence their sum/difference /product/ quotient / compositions
are $c^{c s}$ function on their domains of dofuirion.
explicit eg $=e^{x^{2}-y} \sin \left(\frac{x}{y}\right) \quad($ except $y=0)$
on domain of defuition $=\mathbb{R}^{2} \backslash\{x a x i o s$
Generalization of Clairaut's Chm

If f is c^{k} on on open set $\Omega \subseteq \mathbb{R}^{n}$, then the oder of (taking) differentiation does not matter fa all partial derivatives up to oder k.
eg If $f(x, y, z)$ is c^{3}, then

$$
\begin{aligned}
& f_{x z}=f_{z x}, f_{x y z}=f_{x z y}=f_{z x y}=f_{z y x} \\
& \vdots=f_{y z x}=f_{y x z} \\
& \text { etc. } \\
& f_{x x y}=f_{x y x}=f_{y x x} \text { and etc. }
\end{aligned}
$$

(Mid term up to here, Generalization of Cairaut's Tim)

Differentiability
Recall: 1-voniable: f is differentiable at a if $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ exists
which is equivalent to
Linear Approximation of f at the point a :

$$
f(x) \approx \underbrace{f(a)+f^{\prime}(a)(x-a)}_{L(x) \text { is the "best" linear function }}
$$

$$
(\operatorname{deg} \leqslant 1, \text { poly })
$$

to approximate $f(x)$ near a

What does it moan by "best"?

$$
\lim _{x \rightarrow 0}\left|\frac{f(x)-f(a)}{x-a}-f^{\prime}(a)\right|
$$

11
Answer: $\quad \lim _{x \rightarrow 0} \frac{|f(x)-L(x)|}{|x-a|}=0 \quad\left(\lim _{x \rightarrow a} \frac{|\xi(x)|}{|x-a|}=0\right)$
where $f(x)-L(x)$ is usually referred os the "error" term $\xi(x)=f(x)-L(x)$.

Higher dimension's analogy:
linear function (deg $\leqslant 1$, poly)

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

and want

$$
f(x, y) \approx L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) .
$$

Def: Let $\left\{\begin{array}{l}0 f: \Omega \rightarrow \mathbb{R}, \Omega \subseteq \mathbb{R}^{n}, \text { open } \\ 0 \vec{a}=\left(a_{1}, \cdots, a_{n}\right) \in \Omega\end{array}\right.$
Then f is said to be differentiable at \vec{a}
if (1) $\frac{\partial f}{\partial x_{i}}(\vec{a})$ exists fa all $i=1, \cdots, n$
(2) In the linear approximation $f a f(\vec{x})$ at \vec{a}

$$
f(\vec{x})=\underbrace{f(\vec{a})+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\vec{a})\left(x_{i}-a_{i}\right)}_{L(\vec{x}) \text { linear approx. }}+\begin{gathered}
\varepsilon(\vec{x}) \\
\text { error } \\
\hline
\end{gathered}
$$

the error term $\varepsilon(\vec{x})$ satisfies

$$
\lim _{\vec{x} \rightarrow \vec{a}} \frac{|\varepsilon(\vec{x})|}{\|\vec{x}-\vec{a}\|}=0 .
$$

$\left(\begin{array}{l}\text { A differentiable function is one which can be well approximated } \\ \text { by a linear function locally. }\end{array}\right.$

Remark: $L(\vec{x})=f(\vec{a})+\sum_{i=1}^{n} \underbrace{\frac{\partial f}{\partial x_{i}}}_{\uparrow}(\vec{a}) \underbrace{\left(x_{i}-a_{i}\right)}_{\Delta x_{i}}$
slope of f in
x_{i}-direction at \vec{a}

- $L(\vec{X})$ is a $\operatorname{deg} \leqslant 1$ polynomial
- $L(\vec{a})=f(\vec{a})$
- $\frac{\partial L}{\partial x_{i}}(\vec{a})=\frac{\partial f}{\partial x_{i}}(\vec{a}) \quad$ (Easy Ex!)
- The graph of $y=L(\vec{x})$ is a n-plane tangent to the graph of $y=f(\vec{x})$ (which is a surface) at the pout $\vec{x}=\vec{a}$.
eg 1: $f(x, y)=x^{2} y$
(1) Show that f is differentiable at $(1,2)$
(2) Approximate $f(1.1,1.9)$ using linearization, $f(1,2)$
(3) Find tangent plane of $z=f(x, y)$ at $(1,2,2)$.

Soln: (1) $\frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}$

$$
\frac{\partial f}{\partial x}(1,2)=4, \quad \frac{\partial f}{\partial y}(1,2)=1
$$

\therefore The limearization at $(1,2)$ is

$$
\begin{aligned}
L(x, y) & =f(1,2)+\frac{\partial f}{\partial x}(1,2)(x-1)+\frac{\partial f}{\partial y}(1,2)(y-2) \\
& =2+4(x-1)+(y-2) \quad(=4 x+y-2)
\end{aligned}
$$

with erra term

$$
\begin{aligned}
\varepsilon(x, y) & =f(x, y)-L(x, y) \\
& =x^{2} y-[2+4(x-1)+(y-2)]
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(1,2)} \frac{|\varepsilon(x, y)|}{\|(x, y)-(1,2)\|} \\
& =\lim _{(x, y) \rightarrow(1,2)} \frac{\left|x^{2} y-2-4(x-1)-(y-2)\right|}{\sqrt{(x-1)^{2}+(y-2)^{2}}} \quad \quad\binom{\text { et } h=x-1}{h=y-2} \\
& =\lim _{(h, k) \rightarrow(0,0)} \frac{\left|(1+h)^{2}(k+2)-2-4 h-k\right|}{\sqrt{\hbar^{2}+k^{2}}} \\
& =\lim _{(h, k) \rightarrow(0,0)} \frac{\left|\hbar^{2} k+2 \hbar k+2 h^{2}\right|}{\sqrt{\hbar^{2}+k^{2}}} \quad\left(\text { cet }\left\{\begin{array}{l}
h=r \cos \theta \\
k=r \sin \theta
\end{array}\right)\right. \\
& =\lim _{r \rightarrow 0} \frac{\left|r^{3} \cos ^{2} \theta \sin \theta+2 r^{2} \cos \sin \theta+2 r^{2} \cos ^{2} \theta\right|}{r} \\
& =\lim _{r \rightarrow 0} r\left|r \cos ^{2} \theta \sin \theta+2 \cos \sin \theta+2 \cos ^{2} \theta\right| \\
& =0 \quad b y \operatorname{squegese} \text { Thm }
\end{aligned}
$$

$\therefore f$ is differentiable at $(1,2)$. (To be couit'd)

