Qf of fligher order derivatives (order
$$\ge 3$$
)
Previous eq : $f(x,y) = x \operatorname{Aug} + y^2 e^{2x}$
 $\Rightarrow \quad f_{xy} = (o_{xy} + 4y)e^{2x} = f_{yx}$
 $\Rightarrow \quad (3^{rd} \operatorname{oder}) \quad f_{xyx} = (f_{xy})_x = 8 y e^{2x} = (f_{yx})_x = f_{yxx}$
 $\quad f_{xyy} = (f_{xy})_y = -\operatorname{Aing} + 4e^{2x} = (f_{yx})_y = f_{yxy}$
 $\vdots \quad (E_x : other 3^{rd} \operatorname{oder} partial derivatives})$
One can calculate similarly up to any order

Question Is it always true that
$$f_{xy} = f_{yx}$$
?
Answer: No.

$$\frac{Counter example}{f(x,y)} = \begin{cases} \frac{Xy(x^2-y^2)}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$
By definition,
$$f(x,y) = f(0,y) = f(0$$

$$f_{Xy}(0,0) = (f_{X})_{y}(0,0) = \lim_{h \neq 0} \frac{f_{X}(0,h) - f_{X}(0,0)}{h}$$

: we need to calculate the 1st order partial derivative $f_X(0, h)$ and $f_X(0, 0)$. For (0, h), $f_X(x, y) = \frac{2}{2\chi} \left(\frac{XY(X^2 - y^2)}{X^2 + y^2} \right)$

$$= \frac{(x^{2}+y^{2})(3x^{2}y-y^{3})-Xy(x^{2}y^{2})(2x)}{(x^{2}+y^{2})^{2}}$$

$$\Rightarrow f_{x}(0,t) = -\frac{t^{S}}{t^{4}} = -t$$
For $(0,0)$, $f_{x}(0,0) = \lim_{R \to 0} \frac{f(t,0)-f(0,0)}{t^{R}}$

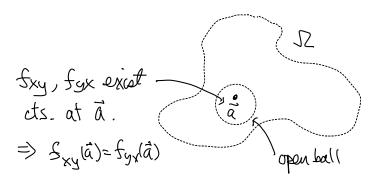
$$= \lim_{R \to 0} \frac{0-0}{t^{R}} = 0$$

$$\therefore f_{xy}(0,0) = \lim_{R \to 0} \frac{f_{x}(0,t)-f_{x}(0,0)}{t^{R}}$$

$$= \lim_{R \to 0} -\frac{t^{R}-0}{t^{R}} = -1$$
Similarly, $f_{yx}(0,0) = 1$ (Ex!)
(In easy way to see this make some : $f(x,y) = -f(y,x)$)
(In easy way to see this make some : $f(x,y) = -f(y,x)$)
(An easy way to see this make some : $f(x,y) = -f(y,x)$)
(Let $f_{xy}(0,0) = f_{yx}(0,0)^{1}$
$$\frac{Cunstim : When do we have $f_{xy} = \frac{f_{yx}}{t^{R}}$?
$$\frac{Then}{t^{R}} (\frac{Uaixauts Then}{t^{R}} / \frac{Mixed Desiratives Then}{t^{R}})$$
Let $f: \Omega \to \mathbb{R}$ ($\Omega \subset \mathbb{R}^{n}$, open)
If $f_{xy} = f_{yx}$ on Ω .$$

Actually, me can prove a stronger version:

Then Let
$$f: \Omega \to \mathbb{R}$$
 ($\Omega \subset \mathbb{R}^{n}$, open)
 $i \in \Omega$
If $f_{y} \in f_{yx} = f_{yx}$ is an open ball containing \vec{a} , and
 $i \in f_{xy} = f_{yx}$ are continuous at \vec{a} ,
then $f_{xy}(\vec{a}) = f_{yx}(\vec{a})$.



$$\begin{array}{c|c} \underline{\mathsf{Mean Value Theorem}} & for 1 - varaible Function \\ Let & f: [a,b] \rightarrow \mathbb{R}, & cartinuous on [a,b] e \\ & & let & f: [a,b] \rightarrow \mathbb{R}, & cartinuous on [a,b] e \\ & & let & let$$

Pf of Clairaut's Thm
We may assume
$$a = (0,0) \in \mathbb{N}$$

and need to shin $f_{xy}(0,0) = f_{yx}(0,0)$.
Let $h, k > 0$ and $[0,t] \times [0,k] \subset \mathbb{N}$
Define $d = f(f_1, k) - f(0, k) - f(f_1, 0) + f(0, 0)$
 $(0, k)$ (x, k) (f_1, k) $g(f_1)$
 $(0, k)$ (x, k) (f_1, k) $g(f_2)$

Let
$$g(x) = f(x, k) - f(x, 0)$$
, $0 \le x \le f$
Then $d = g(f_k) - g(0)$
 $g'(x) = f_x(x, k) - f_x(x, 0)$

Mean value Thm $\Rightarrow \exists f_1 \in (0, f_1)$ such that

$$\frac{g(f_1) - g(0)}{f_1} = g(f_1)$$

i.e.
$$\frac{d}{f_1} = f_x(f_1, f_1) - f_x(f_1, 0)$$

$$d = f_x(f_1, f_1) - f_x(f_1, 0)]$$

Mean Value Thm again $\Rightarrow \exists f_1 \in (0, k)$ such that $\frac{f_{\times}(h_1, k) - f_{\times}(h_1, 0)}{k} = (f_{\times})_y(h_1, k_1)$

$$\therefore x = hk f_{xy}(h_1, k_1)$$

Similarly,
$$\exists (h_2, k_2) \in (0, h) \times (0, k)$$
 such that (Ex!)
 $\chi = h k f_{yx}(h_2, k_2)$ (By interchanging the
vole of $x \neq y$)

$$f_{xy}(t_{1}, t_{1}) = f_{yx}(t_{12}, t_{2})$$

$$J_{etting} t_{1}, k_{2} \Rightarrow t_{1}, t_{1} \Rightarrow 0 \ge t_{12}, t_{2} \Rightarrow 0$$

$$f_{xy}(0,0) = f_{yx}(0,0) \quad \text{since } f_{xy} \ge f_{yx} \text{ are } t_{1} = 10,0).$$

$$(artinuan at \bar{a} = 10,0).$$

Def let
$$f: \Omega \rightarrow IR$$
 ($\Omega \leq IR^n$, open)
Then \circ f is called a C^k function if
all pontial derivatives of f up to
order k exist and are continuous on Ω
 \circ f is called a C^{00} function if
 f is C^k for all $k \succeq 0$.

Generalization of Clairaut's Thm

If f is
$$C^k$$
 on on open set $SI \subseteq IR^n$, then the order
of (taking) differentiation does not matter for all
partial derivatives up to order k.

eg If
$$f(x,y,z)$$
 is C^3 , then
 $f_{Xz} = f_{zx}$, $f_{Xyz} = f_{xzy} = f_{zyx}$
i.
 $f_{zyz} = f_{yzx} = f_{yzz}$
 $f_{yzx} = f_{yzz}$
 $f_{xxy} = f_{xyx} = f_{yxz}$ and etc.
(Mid term up to here, generalization of Clairaut's Thm

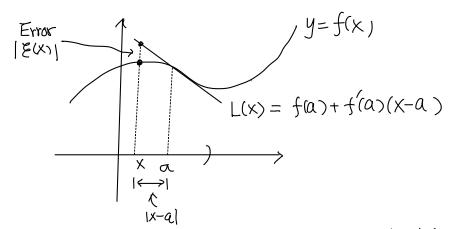
)

 $\frac{\text{Differentiability}}{\text{Recall}} : 1 - \text{voniable} : f is differentiable at a$ $if <math>f(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists

which is equivalent to
Linear Approximation of f at the point a:

$$f(x) \approx f(a) + f(a)(x-a)$$

L(x) is the "best" linear function
(deg < 1, poly)
to approximate f(x) near a



What does it moan by "best"? Answer: $\lim_{x \to 0} \frac{|f(x) - L(x)|}{|x - a|} = 0$ $\left(\lim_{x \to a} \frac{|\xi(x)|}{|x - a|} = 0\right)$ where f(x) - L(x) is usually referred on the "error" term $\xi(x) = f(x) - L(x)$.

Higher dimensions analy:
linear function (dig <1, poly)

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$
and want

$$f(x,y) \approx L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$

$$From = L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$

$$From = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$

$$Daf: (at) \cdot f: J_2 \rightarrow \mathbb{R} , J_2 = \mathbb{R}^{h}, open$$

$$I = a = (a_1, ..., a_n) \in J_2$$
Then f is said to be differentiable at \overline{a}

$$i = f(\overline{a},) + \frac{f(\overline{a}, b)}{2x_i(\overline{a},)} = f(\overline{a}, b)(x_i - a_i) + f(\overline{a}, b)(y-b).$$

$$From = f = a = (a_1, ..., a_n) \in J_2$$
Then f is said to be differentiable at \overline{a}

$$i = (a_1, ..., a_n) \in J_2$$
Then f is said to be differentiable $f(\overline{x}, b) = f(\overline{a}, b) + \frac{f(\overline{a}, b)}{2x_i(\overline{a}, b)} = f(\overline{a}, b) + \frac{f(\overline{a}, b)}{2x_i(\overline{a}, b)} = f(\overline{a}, b) + \frac{f(\overline{a}, b)}{2x_i(\overline{a}, b)} = f(\overline{a}, b) + \frac{f(\overline{a}, b)}{x_i(\overline{a}, b)} = f(\overline{a}, b) + \frac{f(\overline{a}, b)}{x_i(\overline{a$

(A differentiable function is one which can be well approximated) by a linear function locally.

$$\frac{\text{Remark}:}{\text{L}(\vec{x}) = f(\vec{a}) + \sum_{x=1}^{n} \frac{\partial f}{\partial x_{i}} (\vec{a}) (x_{i} - a_{i})}{\sum_{x=1}^{n} \frac{\partial f}{\partial x_{i}}} (\vec{a}) (x_{i} - a_{i})}$$

•
$$L(\vec{x})$$
 is a deg ≤ 1 polynomial
• $L(\vec{a}) = f(\vec{a})$
• $\frac{\partial L}{\partial x_i}(\vec{a}) = \frac{\partial f}{\partial x_i}(\vec{a})$ (Easy Ex!)
• The anaph of $y = I(\vec{x})$ is a n-plane

• The graph of
$$y = L(\vec{x})$$
 is a n-plane tangent
to the graph of $y = f(\vec{x})$ (which is a surface)
at the point $\vec{x} = \vec{a}$.

eg 1:
$$f(x,y) = x^2 y$$

(1) Show that f is differentiable at (1,2)
(2) Approximate $f(1,1,1.9)$ using linearization, $f(1,2)$
(3) Find tougent plane of $z = f(x,y)$ at $(1,2,2)$.

$$\frac{Solm:}{N}: (1) \quad \frac{\partial f}{\partial X} = ZXY , \quad \frac{\partial f}{\partial Y} = X^{2}$$
$$\frac{\partial f}{\partial X}(1,2) = 4 , \quad \frac{\partial f}{\partial Y}(1,2) = 1$$

.'. The linearization at
$$(1,2)$$
 is

$$L(x,y) = f(1,2) + \frac{2f}{\delta x}(1,2)(x-1) + \frac{2f}{\delta y}(1,2)(y-2)$$

$$= 2 + 4(x-1) + (y-2) (= 4x+y-2)$$

with error term

$$E(x,y) = f(x,y) - L(x,y)$$

 $= x^2y - [2+4(x-1)+(y-2)]$

$$\begin{split} \lim_{(X,y) \to (l^{2})} \frac{|E(X,y)|}{||(X,y) - (l^{2})||} \\ &= \lim_{(X,y) \to (l^{2})} \frac{|X^{2}y - 2 - 4(X-1) - (Y-2)|}{\int (X-1)^{2} + (y-2)^{2}} \qquad \left(\begin{array}{c} \text{let } f_{l} = X-1 \\ f_{l} = Y-2 \end{array} \right) \\ &= \lim_{(X,y) \to (l^{2})} \frac{|(1+f_{l})^{2}(k+2) - 2 - 4f_{l} - k|}{\int f_{l}^{2} + k^{2}} \\ &= \lim_{(X,k) \to (0,0)} \frac{|(1+f_{l})^{2}(k+2) - 2 - 4f_{l} - k|}{\int f_{l}^{2} + k^{2}} \qquad \left(\begin{array}{c} (t_{l}) f_{l}^{2} = rout \\ k = rout \end{array} \right) \\ &= \lim_{(X,k) \to (0,0)} \frac{|f_{l}^{2} + k + 2f_{k} + 2f_{l}^{2}|}{\int f_{l}^{2} + k^{2}} \qquad \left(\begin{array}{c} (t_{l}) f_{l}^{2} = rout \\ k = rout \end{array} \right) \\ &= \lim_{(X,k) \to (0,0)} \frac{|f_{l}^{2} - k + 2f_{k} + 2f_{k}^{2}|}{\int f_{l}^{2} + k^{2}} \qquad \left(\begin{array}{c} (t_{l}) f_{l}^{2} = rout \\ k = rout \end{array} \right) \\ &= \lim_{(X,k) \to (0,0)} \frac{|f_{l}^{2} - k + 2f_{k} + 2f_{k}^{2}|}{\int f_{l}^{2} + k^{2}} \\ &= \lim_{(X,k) \to (0,0)} \frac{|f_{l}^{2} - k + 2f_{k} + 2f_{k}^{2}|}{\int f_{l}^{2} + k^{2}} \\ &= \lim_{(X,k) \to (0,0)} \frac{|f_{l}^{2} - k + 2f_{k} + 2f_{k} + 2f_{k}^{2}|}{\int f_{l}^{2} - f_{k} + 2f_{k}^{2}} \\ &= \lim_{(X,k) \to (0,0)} \frac{|f_{l}^{2} - f_{k} + 2f_{k} + 2f_{k} + 2f_{k}^{2}|}{\int f_{l}^{2} - f_{k} + 2f_{k}^{2}} \\ &= \lim_{(X,k) \to (0,0)} \frac{|f_{l}^{2} - f_{k} + 2f_{k} + 2f_{k} + 2f_{k}^{2}}|}{\int f_{l}^{2} - f_{k} + 2f_{k}^{2}} \\ &= \lim_{(X,k) \to (0,0)} \frac{|f_{l}^{2} - f_{k} + 2f_{k} + 2f_{k} + 2f_{k}^{2}|}{\int f_{l}^{2} - f_{k} + 2f_{k}^{2}} \\ &= \lim_{(X,k) \to (0,0)} \frac{|f_{l}^{2} - f_{k} + 2f_{k} + 2f_{k} + 2f_{k}^{2}|}{\int f_{l}^{2} - f_{k} + 2f_{k}^{2}} \\ &= \lim_{(X,k) \to (0,0)} \frac{|f_{l}^{2} - f_{k} + 2f_{k} + 2f_{k} + 2f_{k}^{2}|}{f_{k} + 2f_{k} + 2f_{k}^{2}} \\ &= \lim_{(X,k) \to (0,0)} \frac{|f_{l}^{2} - f_{k} + 2f_{k} + 2f$$