Finding Limit using Polar Coordinates

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array} \Rightarrow "(x, y) \rightarrow(0,0) \Leftrightarrow r \rightarrow 0 \quad /\right.
$$

Qgs (1) Find limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$ uaiug polar condiuates.
Soln: $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} \frac{(r \cos \theta)^{3}+\left(r_{\alpha} \sin \theta\right)^{3}}{(r \cos \theta)^{2}+\left(r_{\sin } \theta\right)^{2}}$

$$
\begin{aligned}
& =\lim _{r \rightarrow 0} r\left(\cos ^{3} \theta+\sin ^{3} \theta\right) \quad(r \geqslant 0) \\
& \left|r\left(\cos ^{3} \theta+\sin ^{3} \theta\right)\right| \leqslant r\left(|\cos \theta|^{3}+|\sin \theta|^{3}\right) \leqslant 2 r
\end{aligned}
$$

Since $\lim _{r \rightarrow 0} 2 r=0$, squeleze thm \Rightarrow

$$
\begin{aligned}
& \lim _{r \rightarrow 0} r\left(\cos ^{3} \theta+\sin ^{3} \theta\right)=0 \\
\therefore \quad & \lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}=0
\end{aligned}
$$

(2) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y}{2\left(x^{2}+y^{2}\right)}$ DNE.

Solv:

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y}{2\left(x^{2}+y^{2}\right)} & =\lim _{r \rightarrow 0} \frac{x^{2}\left(\cos ^{2} \theta+\cos \theta \sin \theta\right)}{2 x^{2}} \\
& =\frac{\cos ^{2} \theta+\cos \theta \sin \theta}{2}
\end{aligned}
$$

Differout θ meaus approcchuing $(0,0)$ in different directions

\therefore Different directions \Rightarrow diffronent θ
\Rightarrow differert lienits.

$$
\therefore \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y}{2\left(x^{2}+y^{2}\right)} \text { DNE. }
$$

$$
\begin{aligned}
& \text { (3) } \lim _{(x, y) \rightarrow(0,0)} x y \ln \left(x^{2}+y^{2}\right) \\
& =\lim _{r \rightarrow 0} r^{2} \cos \sin \theta \ln r^{2}=(\underbrace{\lim _{r \rightarrow 0}}_{1_{0}^{11}} r^{2} \operatorname{lu} r) \cdot 2 \cos \theta \sin \theta \\
& =0 \\
& \binom{\left|r^{2} \cos \theta \sin \theta \ln r^{2}\right| \leqslant 2 r^{2} \ln \frac{1}{r}, \text { for } r \text { near } 0}{h^{\prime} \text { Hopital's Rule } \Rightarrow \lim _{r \rightarrow 0} r^{2} \ln \frac{1}{r}=0(\text { review })}
\end{aligned}
$$

Iterated Limit
(1) $\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y) \stackrel{\text { def }}{=} \lim _{x \rightarrow a}\left(\lim _{y \rightarrow b} f(x, y)\right)$
i.e. Inst take limit as $y \rightarrow b$, then take limit as $x \rightarrow a$.
(2) Similarly fa $\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)$
(3) Are they equal ? $\left(\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y)=\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)\right.$?)
(4) Relation to $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$
eg: Consider $f(x, y)=\frac{x+y}{x-y}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \lim _{y \rightarrow 0} \frac{x+y}{x-y}=\lim _{x \rightarrow 0} \frac{x}{x}=1 \\
& \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} \frac{x+y}{x-y}=\lim _{y \rightarrow 0} \frac{y}{-y}=-1
\end{aligned}
$$

$\therefore \lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y) \neq \lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)$ in general.
$\lim _{(x, y) \rightarrow(0,0)} \frac{x+y}{x-y}$ DNE

Remarks

$$
\begin{gathered}
\left(\text { eg } f(x, y)=\left\{\begin{array}{l}
1, \text { if } x=y \\
0,
\end{array} \quad(a, b x \neq y=(0,0)) \quad(E x!)\right.\right. \\
\\
\downarrow
\end{gathered}
$$

(1)

$$
\begin{aligned}
& \lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y)=\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y) \nRightarrow \lim _{(x, y) \rightarrow(a, b)} f(x, y) \\
& \text { both exist \& equal } \\
& \text { exists (\& equal) } \\
& \uparrow \\
& \begin{array}{c}
\left(e g, f(x, y)= \begin{cases}x \cos \frac{1}{y}+y \operatorname{cs} \frac{1}{x}, & \text { if } x, y \neq 0 \\
0 & \text { if } x=0 \\
a y=0\end{cases} \right. \\
(0, b)=10,0)\left(E_{x}!\right)
\end{array}
\end{aligned}
$$

(2) If all 3 limits exist, then they are equal!

Continuity
Def: Let $f: A^{\subseteq \mathbb{R}^{n}} \rightarrow \mathbb{R} \& \vec{a} \in A \quad($ so $f(\vec{a})$ is deffüed)
Then f is said to be continuous at \vec{a}
if $\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})=f(\vec{a})$ (evicts \& equal to $f(\vec{a})$.)
Equivalently, $\forall \varepsilon>0, \exists \delta>0$ such that
if $\vec{x} \in A \&\|\vec{x}-\vec{a}\|<\delta$, then $|f(\vec{x})-f(\vec{a})|<\varepsilon$.

Def $f: A \rightarrow \mathbb{R}$ is said to be continuous (on A) if f is conturucus at every point in A.
eg: Let $k=1, \cdots, n$. Show that $f\left(x_{1}, \cdots, x_{n}\right)=x_{k}$ is continuous on \mathbb{R}^{n}
(usually called the k-th coodiucte function)
Pf: Let $\vec{a}=\left(a_{1}, \cdots, a_{k}, \cdots a_{n}\right) \in \mathbb{R}^{n}$
$\forall \varepsilon>0$, take $\delta=\varepsilon$.
Then, if $(0<)\|\vec{x}-\vec{a}\|<\delta$, then

$$
\begin{aligned}
|f(\vec{x})-f(\vec{a})| & =\left|x_{k}-a_{k}\right| \leqslant \sqrt{\left(x_{1}-a_{1}\right)^{2}+\cdots+\left(x_{k}-a_{k}\right)^{2}+\cdots+\left(x_{n}-a_{n}\right)^{2}} \\
& <\delta=\varepsilon . \\
\therefore \quad \lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x}) & =f(\vec{a}), \& \text { hence } f \text { is contūucus on } \mathbb{R}^{n} .
\end{aligned}
$$

Thm If $f, g: A \xrightarrow{C \mathbb{R}^{n}} \mathbb{R}$ are caticuons at $\vec{a} \in A$, then
(1) $f(\vec{x}) \pm g(\vec{x}), k f(\vec{x}), f(\vec{x}) g(\vec{x})$ are contūnuos at \vec{a}, where k is a constant.
(2) $\frac{f(\vec{x})}{g(\vec{x})}$ is continuous at \vec{a} provided $g(\vec{a}) \neq 0$

Consequences:
(i) All polynomials of multi-variables are contünces (on $\left.\mathbb{R}^{n}\right)$
(ii) All rational functions of multi-variables are contrinaus on their domain of clefüition

$$
\binom{\text { rational function } \stackrel{\text { def }}{=} \frac{P(\vec{x})}{Q(\vec{x})} \text { fer some polynomials } P(\vec{x}) \& Q(\vec{x})}{\text { "domain of definition" of } \frac{P(\vec{x})}{Q(\vec{x})}=\mathbb{R}^{n} \backslash\{\vec{x}=Q(\vec{x})=0\}}
$$

eds (1) $x^{3}+3 y z+z^{2}-x+7 y$ is a polynomial $m \mathbb{R}^{3}$ $\&$ is contūucus on \mathbb{R}^{3}
(2) $\frac{x^{3}+y^{2}+y z}{x^{2}+y^{2}}$ is a rational function on \mathbb{R}^{3}

$$
\begin{aligned}
\text { domain of defuiction } & =\mathbb{R}^{3} \backslash\{(0,0, z)\} \\
& =\mathbb{R}^{3} \backslash\{z-a x i s\}
\end{aligned}
$$

\& is contūucus on $\mathbb{R}^{3} \backslash\{z$-axis $\}$.

Fact: Let \vec{a} be a zero of polynomial $Q(\vec{x})$ (ie. $Q(\vec{a})=0$)
Then the rational function $r(\vec{x})=\frac{P(\vec{x})}{Q(\vec{x})}$ can be
"extended to a function continuous at $\vec{a} \Leftrightarrow \lim _{\vec{x} \rightarrow \vec{a}} \gamma(\vec{x})$ exists".
gs (1) $f(x, y)=\frac{x y+y^{3}}{x^{2}+y^{2}} \quad\left(\operatorname{in} \mathbb{R}^{2}\right)$
Note $x^{2}+y^{2}=0 \Leftrightarrow(x, y)=(0,0)$

$$
\begin{aligned}
& \lim _{\substack{(x, y) \rightarrow(0,0) \\
y=m x}} f(x, y)=\lim _{\substack{(x, y) \rightarrow(0,0) \\
y=m x}} \frac{x y+y^{3}}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{m x^{2}+m^{3} x^{3}}{x^{2}+m^{2} x^{2}} \\
&=\lim _{x \rightarrow 0} \frac{m+m^{3} x}{1+m^{2}}=\frac{m}{1+m^{2}}<\begin{array}{c}
\text { different } \\
\text { slopes } \\
\text { give diff. } \\
\text { limits. }
\end{array} \\
& \therefore \lim _{(x, y) \rightarrow(0,0)} f(x, y) \text { DNE }
\end{aligned}
$$

$\therefore \frac{x y+y^{3}}{x^{2}+y^{2}}$ cannot be extended to a function continuous at $(0,0)$.
(2) $g(x, y)=\frac{x^{4}-y^{4}}{x^{2}+y^{2}} \quad$ Note $\left.x^{2}+y^{2}=0 \Leftrightarrow(x, y)=(0,0)\right)$

$$
\lim _{(x, y) \rightarrow(0,0)} g(x, y)=\lim _{r \rightarrow 0} \frac{r^{4}\left(\cos ^{4} \theta-\operatorname{sic}^{4} \theta\right)}{r^{2}}=\lim _{r \rightarrow 0} r^{4}\left(\cos ^{4} \theta-\sin ^{4} \theta\right)
$$

$=0$ (by squeze thm)
$\therefore g(x, y)=\frac{x^{4}-y^{4}}{x^{2}+y^{2}} \quad$ extends to a function cartinuos at $(0,0)$.
Infact $g(x, y)=\left\{\begin{array}{l}\frac{x^{4}-y^{4}}{x^{2}+y^{2}}, \text { if }(x, y) \neq(0,0) \\ 0, \text { if }(x, y)=(0,0) .\end{array} \quad\left(g(x, y)=\frac{x^{4}-y^{4}}{x^{2}+y^{2}}=x^{2}-y^{2}\right)\right.$

Thm If $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is contūuons at $\vec{a} \in A$,

- $g(x)$ is a 1 -variable function contrunous at $f(\vec{a})$

Then $g \circ f(\vec{x})(\stackrel{\operatorname{def}}{=} g(f(\vec{x})))$ is contimuons at \vec{a}, and

$$
\lim _{\vec{x} \rightarrow \vec{a}} g(f(\vec{x}))=g\left(\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})\right)=g(f(\vec{a}))
$$

legs: (1) $x_{k} k_{k}$ th condiuate fanction are coutūucas, $\forall k=1, ; n$
$\left\{|x|\right.$ is also continnars $\Rightarrow\left|x_{k}\right|$ are continuoses.

- $\ln |x|$ is contricas for $|x|>0 \Rightarrow \ln \left|x_{k}\right|$ are cartacs if $\left|x_{k}\right|>0$.
(2) $\left.\sin \left(x^{2}+y z\right), e^{x-y}, \cos \left(\frac{1}{x^{2}+y^{2}}\right) \quad(\operatorname{excop}(x, y)=10,0)\right)$
$r=\sqrt{x^{2}+y^{2}}$ are contänaus on their domains.

Partial Derivatives

Def: Let • $\Omega \subseteq \mathbb{R}^{n}$ be open

- $f: \Omega \rightarrow \mathbb{R}$ be a function

Then the i-th partial derivative of f at $\vec{x}=\left(x_{1}, \cdots, x_{n}\right) \in \Omega$ is defined by

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i}}(\vec{x}) & =\frac{\partial f}{\partial x_{i}}\left(x_{1}, \cdots, x_{n}\right) \\
& =\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \cdots, x_{i}+h, \cdots, x_{n}\right)-f\left(x_{1}, \cdots, x_{i}, \cdots, x_{n}\right)}{h}
\end{aligned}
$$

(provided the limit exiets)

Remarks: (1) Ω open "ensures" $\left(x_{1}, \cdots, x_{i}+h, \cdots, x_{n}\right) \in \Omega$ for small h so that $f\left(x_{1}, \cdots, x_{i}+h, \cdots, x_{n}\right)$ is defined.
(2) If $n=1, \frac{\partial f}{\partial x}=\frac{d f}{d x}$
(3) If $n=2$, we casually write

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& \frac{\partial f}{\partial y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

(4) In practice, $\frac{\partial f}{\partial x_{i}}$ can be calculated as derivative in one variable x_{i} by regarding other variables as constants.
(5) Other notations:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\partial_{1} f=D_{1} f=\nabla_{1} f=f_{x} \\
& \frac{\partial f}{\partial y}=\partial_{2} f=D_{2} f=\nabla_{2} f=f_{y}
\end{aligned}
$$

eg $f(x, y)=x^{2}+y^{2}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right)=2 x+0=2 x \quad\left(\frac{\partial\left(y^{2}\right)}{\partial x}=0\right) \\
& \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x^{2}+y^{2}\right)=0+2 y=2 y \quad\left(\frac{\partial\left(x^{2}\right)}{\partial y}=0\right)
\end{aligned}
$$

Note: As the point $(1,-1)$

$$
\begin{array}{rc}
\frac{\partial f}{\partial x}(1,-1)= & 2 \\
V & \& \frac{\partial f}{\partial y}(1,-1)= \\
0
\end{array}
$$

f increases as x increases at $(1,-1)$
f deceases as y increases at $(1,-1)$

$$
f(x, y)=x^{2}+y^{2}=\left(d i s t t_{0}(0,0)\right)^{2}
$$

eg: $f(x, y, z)=x y^{2}-\cos (x z)$
Then $f_{x}=y^{2}+z \sin (x z)$

$$
\begin{aligned}
& f_{y}=2 x y \\
& f_{z}=x \sin (x z)
\end{aligned}
$$

eg $f(x, y)= \begin{cases}1, & \text { if } x y \geqslant 0 \\ 0, & \text { if } x y<0\end{cases}$
Find $\frac{\partial f}{\partial x}(1,1), \frac{\partial f}{\partial x}(0,1), \& \frac{\partial f}{\partial x}(0,0)$

Sold: $F a(1,1)$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(1+h, 1)-f(1,1)}{h}=\lim _{h \rightarrow 0} \frac{1-1}{h}=0 \\
& \therefore \quad \frac{\partial f}{\partial x}(1,1)=0 \\
& \text { Fin }(0,1) \\
& \lim _{\substack{h \rightarrow 0}} \frac{f(0+h, 1)-f(0,1)}{h}=\lim _{h \rightarrow 0} \frac{1-1}{h}=0 \\
& \lim _{h>0} \\
& \lim _{\substack{h \rightarrow 0}} \frac{f(0+h, 1)-f(0,1)}{h}=\lim _{h \rightarrow 0} \frac{0-1}{h} \text { DNE } \\
& h<0 \\
& h<0 \\
& \therefore \frac{\partial f}{\partial x}(0,1) D N E .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Fcr}(0,0) \\
& \lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{1-1}{h}=0 \\
& \therefore \frac{\partial f}{\partial x}(0,0)=0
\end{aligned}
$$

$\left(\frac{\partial f}{\partial x}\right.$ exicts at $(0,0) \nRightarrow f$ is contincacs at $\left.(0,0)\right)$
Sumilarly $\frac{\partial f}{\partial y}(0,0)=0$

Higher Order Poutial Derisaties

$$
n=2, f(x, y) \longrightarrow \frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y) \text { 1st arder derisatives }
$$

$$
\rightarrow \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}(x, y)\right), \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}(x, y)\right)
$$

zin order durisatives

$$
\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}(x, y)\right), \frac{\partial}{\partial y}\left(\frac{\partial}{\partial y} f(x, y)\right)
$$

becareful

Notations: $\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=f_{x x}, \quad \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)^{2}=f_{y x}$

$$
\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=f_{x y}, \quad \frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=f_{y y}
$$

Of course, swïllarly fa $3^{\text {rd }}$ order denivatives: ely

$$
\begin{aligned}
\frac{\partial^{3} f}{\partial x \partial y^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial^{2} f}{\partial y^{2}}\right)=\frac{\partial}{\partial x}\left[\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)\right] \\
& =f_{y y x}
\end{aligned}
$$

og:

$$
f(x, y)=x \sin y+y^{2} e^{2 x}
$$

Then

$$
\begin{aligned}
& f_{x}=\sin y+2 y^{2} e^{2 x} \\
& f_{y}=x \cos y+2 y e^{2 x} \\
& \left\{\begin{array}{l}
f_{x x}=4 y^{2} e^{2 x} \\
f_{x y}=\cos y+4 y e^{2 x}
\end{array}\right. \\
& \left\{\begin{array}{l}
f_{y x}=\cos y+4 y e^{2 x} \\
f_{y y}=-x \sin y+2 e^{2 x}
\end{array}\right.
\end{aligned}
$$

