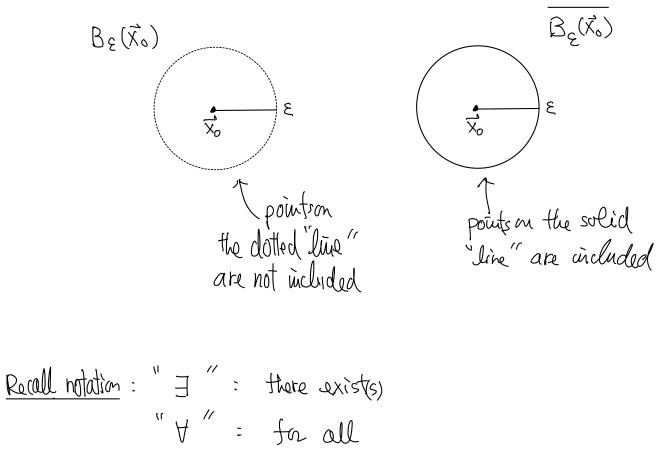
Topological Terminology in R

$$\begin{array}{l} \underline{\operatorname{Def}} & B_{\underline{\varepsilon}}(\vec{x}_0) = \left\{ \vec{x} \in \operatorname{IR}^n : \| \vec{x} - \vec{x}_0 \| < \varepsilon \right\} \text{ is called the} \\ & \underline{\operatorname{Open ball}} \quad \mathrm{of \ radius} \ \varepsilon \ \mathrm{and} \ \mathrm{centered} \ \mathrm{at} \ \vec{x}_0 \\ & \overline{\operatorname{B}_{\underline{\varepsilon}}(\vec{x}_0)} = \left\{ \vec{x} \in \operatorname{IR}^n : \| \vec{x} - \vec{x}_0 \| < \varepsilon \right\} \text{ is called the} \\ & \underline{\operatorname{losed \ ball}} \ \mathrm{of \ radius} \ \varepsilon \ \mathrm{and} \ \mathrm{centered} \ \mathrm{at} \ \vec{x}_0 \\ \hline \\ & \underline{\operatorname{Renark}} : \ \mathrm{If} \ n=2, \quad B_{\underline{\varepsilon}}(\vec{x}_0), \ \overline{\operatorname{B}_{\underline{\varepsilon}}(\vec{x}_0)} \ \mathrm{axe \ referred} \ \mathrm{as} \\ & \underline{\operatorname{Open \ disk}} \ , \ \underline{\operatorname{closed \ disk}} \ \ \mathrm{and} \ \ \mathrm{denoted \ bg} \\ & \underline{\operatorname{D}_{\underline{\varepsilon}}(\vec{x}_0), \ \overline{\operatorname{D}_{\underline{\varepsilon}}(\vec{x}_0)} \ \ \mathrm{in \ some \ fextbooks}} \end{array}$$



$$\frac{\text{Def}:}{\text{Int} S \text{ be a set in } \mathbb{R}^{n}}.$$
(1) The interior of S is the set

$$\text{Int}(S) = \{\vec{x} \in \mathbb{R}^{n} : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(\vec{x}) \in S\}$$
Points in Int(S) are called interior points of S
(2) The exterior of S is the set

$$\text{Ext}(S) = \{\vec{x} \in \mathbb{R}^{n} : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(\vec{x}) \in \mathbb{R}^{n} \setminus S\}$$
Points in Ext(S) are called exterior points of S
(3) The boundary of S is the set

$$\partial S = \{\vec{x} \in \mathbb{R}^{n} : \forall \epsilon > 0 \text{ s.t. } B_{\epsilon}(\vec{x}) \cap S \neq \phi, \epsilon \}$$
Points on ∂S are called boundary points of S

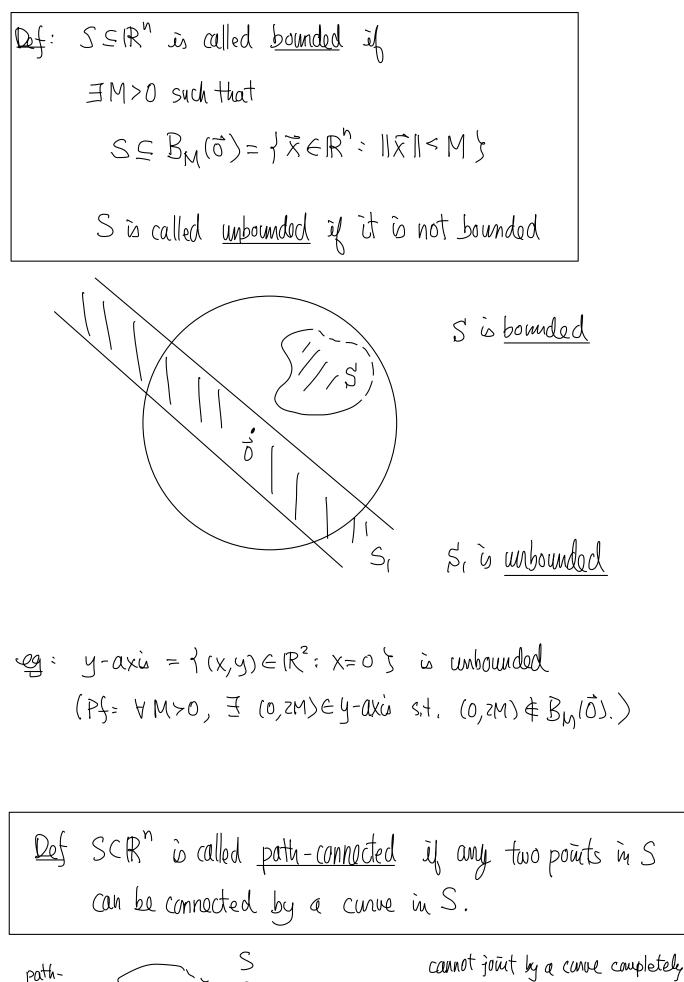
Def A set
$$S \subset \mathbb{R}^n$$
 is called
(1) open if $\forall x \in S$, $\exists \varepsilon > 0$ such that $B_{\varepsilon}(x) \leq S$
(2) closed if $\mathbb{R}^n \setminus S$ is open

$$\frac{\text{Equivalent dofinition}}{(1) \quad \text{S open} \Leftrightarrow S = \text{Int}(S)}$$
(z) $\text{S closed} \Leftrightarrow S = \text{Int}(S) \cup \partial S$
(check!)

eq Is
$$S=\{(x,y)\in\mathbb{R}^2: 1< x^2+y^2\leq 4\}$$
 open a closed?
Answer: Not open, and
Not closed!
(Similar to EJE, of com \mathbb{R}^1)
(Closed not open, not closed topen)

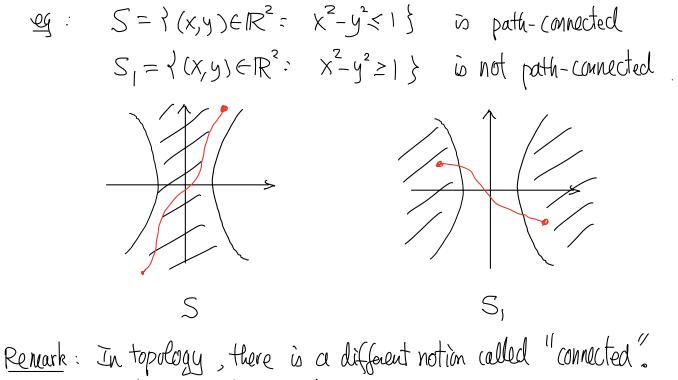
Eg:	I	I		I	I
Subset	B ₁ (0,0)	$\overline{B_{I}(0,0)}$	S	\mathbb{R}^2	ϕ
SCR	$= \{(X,Y) \in \mathbb{R}^2 : X^2 + Y^2 < 1\}$	$= \{(X,Y) \in \mathbb{R}^2 : X^2 + Y^2 \leq 1 \}$	$= \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \}$		(empty set)
Int(s)	B,(0,0)	B ₁ (0,0)	ϕ	\mathbb{R}^{2}	Ø
Ext(S)	$\mathbb{R}^{2} \setminus \overline{B_{1}(0,0)}$ $= \{(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} > 1\}$	$\mathbb{R}^2 \setminus \overline{\mathcal{B}}_1(0,0)$	$\mathbb{R}^2 \setminus \mathbb{S}^1$	φ	\mathbb{R}^2
98	\$'	\mathbb{S}^{I}	S	φ	ϕ
Open?	Yes	No	No	Yes	Yes
Closed?	No	Yes	Yes	Yes	Yes
Picture					\rightarrow

Remarks: (1) There are exactly two subjects of Rⁿ which are <u>both</u> open and closed = Rⁿ and Ø. (2) Some subjects of Rⁿ are <u>neither</u> open <u>ner</u> closed. (eg: above) (3) For any S≤Rⁿ, Int(S) & Ext(S) are <u>open</u> in Rⁿ; DS is <u>closed</u> in Rⁿ (Ex: What about Int(S)UDS?)



ing a canve complexely ______ ruside S_

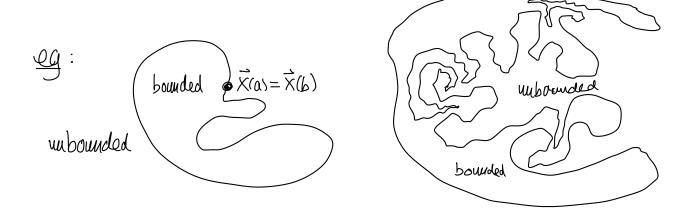
connected

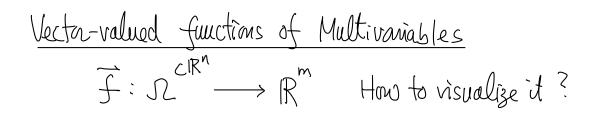


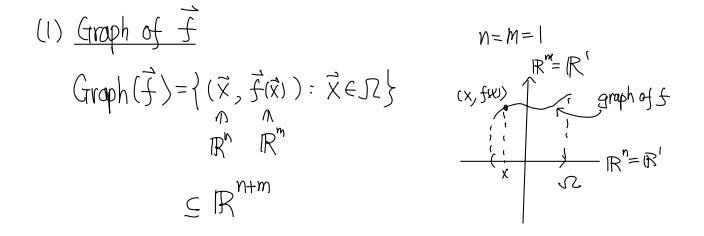
We'll not discuss it.

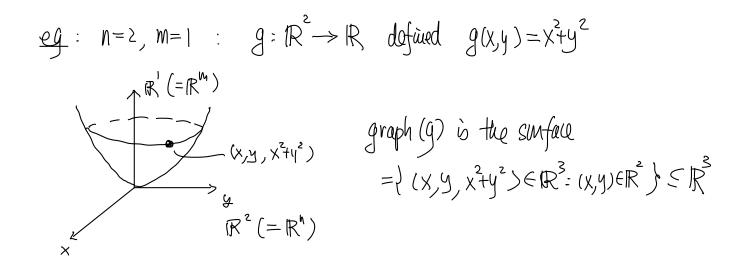
Thm (Jordan Curve Theorem) A <u>simple</u> <u>closed</u> curve in \mathbb{R}^2 divides \mathbb{R}^2 into 2 path-connected components, with one bounded and one unbounded

Romark: "closed anne" means continuous curve $\vec{X}(t)$, of $t \leq b$ anth X(a)=X(b). And one can show that it is a " closed subset " in \mathbb{R}^2 .





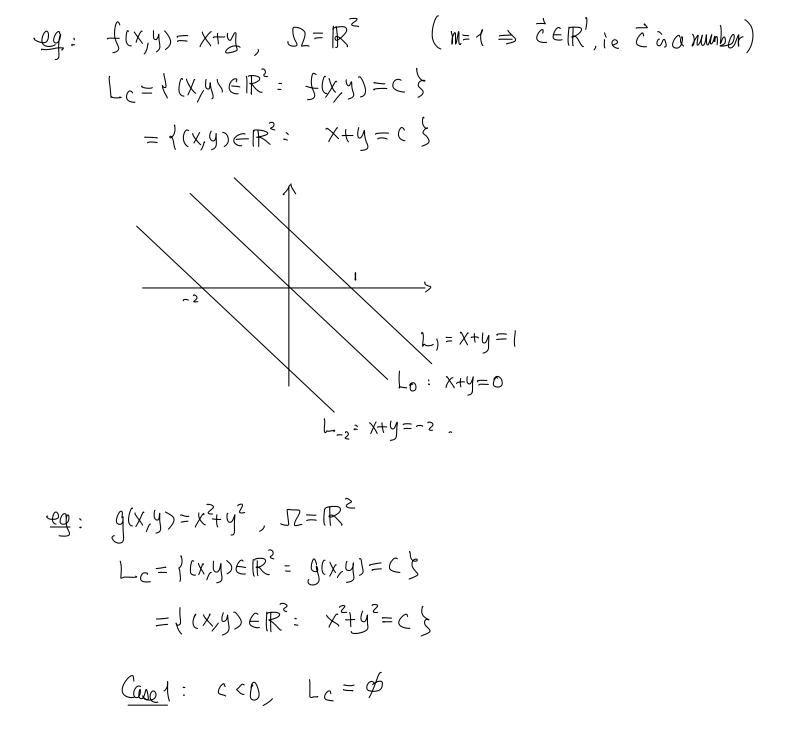




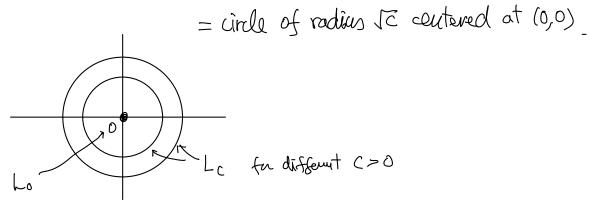
(In general, it is impossible to draw the graph for n+m>3 !)

(2) level set of
$$\vec{f}: \mathcal{D} \longrightarrow \mathbb{R}^{m}$$

If $\vec{c} \in \mathbb{R}^{m}$, define the level set at \vec{c} to be
 $L_{\vec{c}} = \{\vec{x} \in \mathcal{D} \subset \mathbb{R}^{n} \in \vec{f}(\vec{x}) = \vec{c}\} = (\vec{f})(\vec{c}) \subseteq \mathcal{D} \subseteq \mathbb{R}^{n}$.



 $\underline{Caac}^{2}: c=0, \quad L_{0} = \{(0,0)\}$ $\underline{Caac}^{3}: <>0, \quad L_{c} = \{(X, 4) \in [R^{2}: X^{2} + y^{2} = c\}$



$$\begin{aligned}
 \underline{\alpha}_{4} : f_{1}(x,y) &= (\omega \left(2\pi \left(x^{2}+y^{2}\right)\right), \quad J_{2} = \mathbb{R}^{2} \\
 \underline{\alpha}_{c} &= \left\{(x,y) \in \mathbb{R}^{2} : f_{1}(x,y) = c\right\} \\
 &= \left\{(x,y) \in \mathbb{R}^{2} : (\omega \left(2\pi \left(x^{2}+y^{2}\right)\right) = c\right\} \\
 &(\underline{\alpha}_{c} = 1: \text{ If } |c| > 1, \text{ then } L_{c} = \phi. \\
 &(\underline{\alpha}_{c} = 2: \text{ If } |c| < 1, \text{ then } L_{c} = \left\{(x,y) \in \mathbb{R}^{2} : x^{2}y^{2} = \frac{1}{2\pi} \cdot \overline{\omega}_{c}(c)\right\} \\
 &= \underline{\alpha}_{c} = \frac{1}{2\pi} (\omega |c|) \quad (\omega |c|) < 0 \\
 &L_{c} = \phi \\
 ⋐(\underline{\alpha}_{c} = (\underline{\alpha}) \cdot \omega |c|) < 0 \\
 &L_{c} = \left\{(0,0)\right\} \\
 ⋐(\underline{\alpha}_{c} = (\underline{\alpha}) \cdot \omega |c|) < 0 \\
 &L_{c} = (\underline{\alpha}, 0) \\
 &L_{c} = (\underline{\alpha}$$

