Topological Terminology in \mathbb{R}^{n}
Ref - $B_{\varepsilon}\left(\vec{x}_{0}\right)=\left\{\vec{x} \in \mathbb{R}^{n}:\left\|\vec{x}-\vec{x}_{0}\right\|<\varepsilon\right\}$ is called the
Open ball of radius ε and centered at \vec{x}_{0}

- $\overline{B_{\varepsilon}\left(\vec{x}_{0}\right)}=\left\{\vec{x} \in \mathbb{R}^{n}=\left\|\vec{x}-\vec{x}_{0}\right\| \leqslant \varepsilon\right\}$ is called the closed ball of radius ε and centered at \vec{x}_{0}

Remark $=$ If $n=2, \quad B_{\varepsilon}\left(\vec{x}_{0}\right), \overline{B_{\varepsilon}\left(\vec{x}_{0}\right)}$ are referred as open disk, closed disk and denoted by $D_{\varepsilon}\left(\vec{x}_{0}\right), \overline{D_{\varepsilon}\left(\overrightarrow{x_{0}}\right)}$ in some textbooks.

the dotted "time" are not inclined
 "line" are included

Recall notation: " \exists " : there exists)

$$
\text { " } \forall^{\prime \prime}=f o r \text { all }
$$

Def: Let S be a set in \mathbb{R}^{n}
(1) The interin of S is the set

$$
\operatorname{Int}(S)=\left\{\vec{x} \in \mathbb{R}^{n}: \exists \varepsilon>0 \text { s.t. } \quad B_{\varepsilon}(\vec{x}) \subset S\right\}
$$

Pourts in Int (S) are called interica poñts of S
(2) The exterin of S is the set

$$
\operatorname{Ext}(S)=\left\{\vec{x} \in \mathbb{R}^{n}: \mp \varepsilon>0 \text { s.t. } B_{\varepsilon}(\vec{x}) \subset \mathbb{R}^{n} \backslash S\right\}
$$

Pounts in Ext(S) are called exterica points of S
(3) The boundary of S is the set

$$
\partial S=\left\{\vec{x} \in \mathbb{R}^{n}: \forall \varepsilon>0 \text { s.t. } \begin{array}{ll}
B_{\varepsilon}(\vec{x}) \cap S \neq \phi, \& \\
& B_{\varepsilon}(\vec{x}) \cap\left(\mathbb{R}^{n} \mid S\right) \neq \phi
\end{array}\right\}
$$

Poüts on ∂S are called boundary pounts of S
eg: $S=\left\{(x, y) \in \mathbb{R}^{2}: 1<x^{2}+y^{2} \leqslant 4\right\} \subset \mathbb{R}^{2}$

$A=$ boumdary poüt $C=$ boundary poüt
$B=$ interiar poüt $D=$ exterin pount

$$
\begin{aligned}
& I_{n}(S)=\left\{(x, y) \in \mathbb{R}^{2}: 1<x^{2}+y^{2}<4\right\} \\
& E_{x} t(S)=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<100 x^{2}+y^{2}>4\right\} \\
& \partial S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=100 x^{2}+y^{2}=4\right\}
\end{aligned}
$$

Prop let $S \subset \mathbb{R}^{n}$. Then
(1) $\mathbb{R}^{n}=$ disjoint union of $\operatorname{Int}(S)$, Ext (S) and ∂S
(2) $\operatorname{Int}(S) \subseteq S$

$$
\operatorname{Ext}(S) \subseteq \mathbb{R}^{n} \backslash S
$$

(3) A point on ∂S may a may not be in S
(Fa statement (3), see points $A+C$ in the above eg.)

Def A set $S \subset \mathbb{R}^{n}$ is called
(1) open if $\forall x \in S, \exists \varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq S$
(2) closed if $\mathbb{R}^{n} \backslash S$ is open

Equivalent deffuition:
(1) S open $\Leftrightarrow S=\operatorname{Int}(S)$
(2) S closed $\Leftrightarrow S=\operatorname{Int}(S) \cup \partial S$
eg Is $S=\left\{(x, y) \in \mathbb{R}^{2}: 1<x^{2}+y^{2} \leqslant 4\right\}$ open a closed?
Answer: Not open, and
Not closed!

Eg:

Remarks: (1) There are exactly two subsets of \mathbb{R}^{n} which are both open and closed $=\mathbb{R}^{n}$ and ϕ.
(2) Some subsets of \mathbb{R}^{n} are neither open na closed. (eg: above)
(3) Fa any $S \subseteq \mathbb{R}^{n}, \operatorname{Int}(S) \& \operatorname{Ext}(S)$ ave open in \mathbb{R}^{n}; ∂S is closed in \mathbb{R}^{n}
(Ex: What about Int (S) UOS?)

Def: $S \subseteq \mathbb{R}^{n}$ is called bounded if $\exists M>0$ such that

$$
S \subseteq B_{M}(\overrightarrow{0})=\left\{\vec{x} \in \mathbb{R}^{n}:\|\vec{x}\|<M\right\}
$$

S is called unbounded if it is not bounded

eg: y-axis $=\left\{(x, y) \in \mathbb{R}^{2}: x=0\right\}$ is unbounded

$$
\left(P f=\forall M>0, \exists(0, z M) \in y \text {-axis sit. }(0,2 M) \notin B_{M}(\overrightarrow{0}) .\right)
$$

Def $S C \mathbb{R}^{n}$ is called path-connected if any two points in S can be connected by a curve in S.
pathconnected
 cannot joint by a canoe completely
 inside S.
eg: $S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-y^{2} \leqslant 1\right\}$ is path-connected $S_{1}=\left\{(x, y) \in \mathbb{R}^{2}: \quad x^{2}-y^{2} \geq 1\right\}$ is not path-connected

S

S,

Remark: In topology, there is a different notion called "connected". Weill not discuss it.

Thy (Jordan Curve Theorem)
A single closed curve in \mathbb{R}^{2} divides \mathbb{R}^{2} into 2 path-connected components, with one bounded and one unbounded

Remark: "Closed amp" means contunums curve $\vec{x}(t), a \leqslant t \leqslant b$ with $\vec{X}(a)=\vec{X}(b)$. And one can show that it is a "closed subset" in \mathbb{R}^{2}.
eg:

Vecta-valued functions of Multivariables
$\vec{f}: \Omega^{c \mathbb{R}^{n}} \longrightarrow \mathbb{R}^{m}$ How to visualize it?
(1) Graph of \vec{f}

$$
\begin{aligned}
\operatorname{Groph}(\vec{f})= & \{(\vec{x}, \vec{f}(\vec{x})): \vec{x} \in \Omega\} \\
& n \\
& \mathbb{R}^{n} \mathbb{R}^{m} \\
& \subseteq \mathbb{R}^{n+m}
\end{aligned}
$$

eq: $n=2, m=1: \quad g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ deffüed $g(x, y)=x^{2}+y^{2}$

$\operatorname{graph}(g)$ is the sinface

$$
=\left\{\left(x, y, x^{2}+y^{2}\right) \in \mathbb{R}^{3}=(x, y) \in \mathbb{R}^{2}\right\} \subseteq \mathbb{R}^{3}
$$

(In general, it is possible to draw the graph fa $n+m>3!$)
(2) Level set of $\vec{f}: \Omega \xrightarrow{c \mathbb{R}^{n}} \mathbb{R}^{m}$

If $\vec{c} \in \mathbb{R}^{m}$, deffer the level set at \vec{c} to be

$$
L_{\vec{c}}=\left\{\vec{x} \in \Omega \subset \mathbb{R}^{n}=\vec{f}(\vec{x})=\vec{c}\right\}=(\vec{f})^{-1}(\vec{c}) \subseteq \Omega \subseteq \mathbb{R}^{n} .
$$

eq: $f(x, y)=x+y, \quad \Omega=\mathbb{R}^{2} \quad\left(m=1 \Rightarrow \vec{c} \in \mathbb{R}^{\prime}\right.$, ie \vec{c} is a number $)$

$$
\begin{aligned}
L_{c} & =\left\{(x, y) \in \mathbb{R}^{2}: \quad\right. & f(x, y)=c\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: \quad\right. & x+y=c\}
\end{aligned}
$$

eg: $g(x, y)=x^{2}+y^{2}, \quad \Omega=\mathbb{R}^{2}$

$$
\begin{aligned}
L_{c} & =\left\{(x, y) \in \mathbb{R}^{2}=g(x, y)=c\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: \quad x^{2}+y^{2}=c\right\}
\end{aligned}
$$

Case 1: $c<0, \quad L_{c}=\phi$
Cases 2: $\quad C=0, \quad L_{0}=\{(0,0)\}$
Care 3: $c>0, L_{c}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=c\right\}$
$=$ circle of radius \sqrt{c} centered at $(0,0)$.

for differmet $c>0$
eg: $h(x, y)=\cos \left(2 \pi\left(x^{2}+y^{2}\right)\right), \quad \Omega=\mathbb{R}^{2}$

$$
\begin{aligned}
L_{c} & =\left\{(x, y) \in \mathbb{R}^{2}: h(x, y)=c\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}=\cos \left(2 \pi\left(x^{2}+y^{2}\right)\right)=c\right\}
\end{aligned}
$$

Case 1: If $|C|>1$, then $L_{c}=\varnothing$.
Cue 2: If $|C| \leqslant 1$, then $L_{C}=\left\{(x, y) \in \mathbb{R}^{2}=x^{2}+y^{2}=\frac{1}{2 \pi} \operatorname{Cos}^{-1}(C)\right\}$
subcare $(a) \cos ^{-1}(c)<0$ need $\cos ^{-1}(c) \geq 0$.

$$
L_{c}=\varnothing
$$

Subbase (b) $\quad \cos ^{-1}(c)=0$

$$
L_{C}=\{(0,0)\}
$$

Subcore (c) $\quad \cos ^{-1}(C)>0$
$L_{C}=$ circle of radius $\sqrt{\frac{1}{2 \pi} \cos ^{-1}(c)}$ centered at $(0,0)$.

Level set \leftrightarrow graph

cut at horizontal lever

$$
z=c(\geqslant 0)
$$

\downarrow project down
level set

