Arclength (of a conure)
Let $\vec{X}(t)$ be a curve with $\vec{X}^{\prime}(t)$ exits and continuous

Def: Arclength of $\vec{x}(t)$ fa $a \leqslant t \leqslant b$ is

$$
S=\int_{a}^{b}\left\|\vec{X}^{\prime}(t)\right\| d t
$$

Remark: If $\vec{X}(t)=$ displacement at time t
then $\vec{x}^{\prime}(t)=$ velocity

$$
\begin{gathered}
\left\|\vec{x}^{\prime}(t)\right\|=\text { speed } \\
\int_{a}^{b}\left\|\vec{x}^{\prime}(t)\right\| d t=\text { distance travelled. }
\end{gathered}
$$

Ida of the defy (from mathematician's point of view)

$\vec{x}(a)$

$$
\begin{aligned}
S & \approx \sum_{i}\left\|\vec{x}\left(t_{i}\right)-\vec{x}\left(t_{i-1}\right)\right\| \quad\left(\vec{x}^{\prime}\left(t_{i}\right)=\lim _{t \rightarrow t_{i}} \frac{\vec{x}(t)-\vec{x}\left(t_{i}\right)}{t-t_{i}}\right) \\
& \approx \sum_{i}\left\|\vec{x}^{\prime}\left(t_{i}\right)\right\|\left(t_{i}-t_{i-1}\right) \underset{\substack{\uparrow \\
\text { as the approximation get better \& better" }}}{b}\left\|\vec{x}^{\prime}(t)\right\| d t
\end{aligned}
$$

approximate the cure by straight line segments.
eg: (Helix)

$$
\vec{X}(t)=(\cos t, \sin t, t) \quad\left(\text { cove in } \mathbb{R}^{3}\right) \quad t \in[0,2 \pi]
$$

(a) Find the tangent lime of \vec{x} at $t=\pi$
(b) Fired arclength of the helix
(a): $\vec{X}(t)=(\cos t, \sin t, t)$

$$
\vec{x}^{\prime}(t)=(-\sin t, \cos t, 1)
$$

$\therefore \vec{X}(\pi)=(-1,0, \pi)$ is a point on the tangent line $\vec{x}^{\prime}(\pi)=(0,-1,1)$ is a direction vector of the tangent line.
\therefore The tangent lime of $t=\pi$ is given by

$$
\begin{array}{rlr}
\vec{y}(\tau) & =\vec{x}(\pi)+\tau \vec{x}^{\prime}(\pi) & (\tau \in \mathbb{R}) \\
& =(-1,0, \pi)+\tau(0,-1,1) &
\end{array}
$$

(b) $\left\|\vec{x}^{\prime}(t)\right\|=\sqrt{(-\sin t)^{2}+(\cos t)^{2}+1^{2}}=\sqrt{2}$

$$
\begin{aligned}
\Rightarrow \text { arclength } s & =\int_{0}^{2 \pi}\left\|\vec{x}^{\prime}(t)\right\| d t=\int_{0}^{2 \pi} \sqrt{2} d t \\
& =2 \sqrt{2} \pi
\end{aligned}
$$

Remark: Arclength is independent of chouge of ponameters! (Proof omitted)

$$
(E x)
$$

Polar Conciumates m \mathbb{R}^{2}
$P=(x, y) \in \mathbb{R}^{2}$ can be represented by $(r \cos \theta, r \sin \theta)$
where $r=\sqrt{x^{2}+y^{2}}=$ distance from origin $\theta=$ angle from the positive x-axis to $\overrightarrow{O P}$ in counter-clockuise direction

Remarks: (i) $(r \cos \theta, r \sin \theta)=(r \cos (\theta+2 k \pi), r \sin (\theta+2 k \pi))$

$$
\text { for any } k \in \mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}
$$

(ii) Fa $P=(0,0)$, then $\left\{\begin{array}{l}r=0 \\ \theta \text { is not well-defened }\end{array}\right.$
(iii) Fa our defn. we usually set

$$
\begin{array}{ll}
r \in[0, \infty) & (r \geq 0) \\
\theta \in[0,2 \pi) & (0 \leqslant \theta<2 \pi)
\end{array}
$$

But in some book, $\left\{\begin{array}{l}r \in \mathbb{R} \text { (can be negative cos in Textbook) } \\ \quad \text { (see later exacople } \\ \theta \in \mathbb{R}\end{array}\right.$

Change of Condinates famula

$$
\left\{\begin{array} { l }
{ x = r \operatorname { c o s } \theta } \\
{ y = r \operatorname { s i n } \theta }
\end{array} \quad \& \quad \left\{\begin{array}{l}
r=\sqrt{x^{2}+y^{2}} \\
\theta=\tan ^{-1}\left(\frac{y}{x}\right) \quad(\tan x>0)
\end{array}\right.\right.
$$

Curves in Polar Condinates
eg: Circle of radius $r_{0}>0$, centered at origin
Polar Equation:

$$
r=r_{0} .
$$

Parametric Fame (in polar)

$$
\begin{gathered}
\left\{\begin{array}{l}
r=r_{0} \\
\theta=t, \quad t \in[0,2 \pi]
\end{array}\right. \\
\left(\vec{x}(t)=\left(r_{0} \cos t, r_{0} \Delta \overline{\sin t)}\right)\right.
\end{gathered}
$$

eg Half ray from origin
Polar Equation

$$
\theta=\theta_{0}
$$

Parametric form (ins polar)

$$
\begin{cases}r=t, & t \in[0, \infty) \\ \theta=\theta_{0} & \end{cases}
$$

eq: Archimedes Spiral
$k>0$ is a constant.
Polar Equation
Parametric fam (in pole)

$$
r=k \theta
$$

$$
\left\{\begin{array}{l}
r=k t \\
\theta=t
\end{array} \quad t \in[0, \infty)\right.
$$

Remark: $\quad \vec{x}(t)=(r \cos \theta, r \sin \theta)=(k t \cos t, k t \sin t)=k(t \cos t, t \sin t)$
$\Rightarrow \vec{x}^{\prime}(t)=k\left(\cos t-t_{\sin } \quad \sin t+t \cos t\right)$ is the tangent nectar at $\vec{x}(t)=k(t \cos t, \tan t)$.
$\left(\left(\gamma^{\prime}(t), \theta^{\prime}(t)\right)=(k, 1)\right.$ is not the tangent nectar in. $\left.\mathbb{R}^{2}\right)$
eg: $r=4 \cos \theta\left(\geqslant 0,-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}\right)$

$$
\cos \theta \geq 0
$$

$$
\begin{aligned}
r=4 \cos \theta & \Rightarrow r^{2}=4 r \cos \theta \\
& \Rightarrow x^{2}+y^{2}=4 x \\
& \Rightarrow(x-2)^{2}+y^{2}=2^{2}
\end{aligned}
$$

a circle of radius 2 centered at $(2,0)$.
eg: $\quad \gamma \cos \left(\theta-\frac{\pi}{4}\right)=\sqrt{2}$

$$
\begin{gathered}
r\left(\cos \theta \cos \frac{\pi}{4}+\sin \theta \sin \frac{\pi}{4}\right) \\
11 \\
\frac{r \cos \theta}{\sqrt{2}}+\frac{r \sin \theta}{\sqrt{2}} \\
11 \\
\frac{1}{\sqrt{2}} x+\frac{1}{\sqrt{2}} y \\
\therefore \quad \\
x+y=2
\end{gathered}
$$

Negative r
Our convention is $r \geq 0$.
But sometimes is convenient to allow $r<0$ by the interpretation

$$
\begin{aligned}
(x, y) & =(r \cos \theta, r \sin \theta) \\
& =(-|r| \cos \theta,-|r| \sin \theta) \\
& =-(|r| \cos \theta,|r| \sin \theta) \quad(=(|r| \cos (\theta+\pi),|r| \sin (\theta+\pi))
\end{aligned}
$$

eg: $r=-2, \quad \theta=\frac{\pi}{6} \quad(x, y)=\left(-2 \cos \frac{\pi}{6},-2 \sin \frac{\pi}{6}\right)=-(\sqrt{3}, 1)=(-\sqrt{3},-1)$
eg: $r=1-(1+\varepsilon) \cos \theta, \quad \varepsilon>0$

$$
=1-a \cos \theta, \quad a=1+\varepsilon>1
$$

Case 1: $r \geqslant 0 \Rightarrow 1-a \cos \theta \geqslant 0 \Rightarrow \cos \theta \leqslant \frac{1}{a}<1$
$\Rightarrow \theta$ cannot run through the whole interval $[0,2 \pi]$
but only $[\delta, 2 \pi-\delta]$
where $\delta=\cos ^{-1}\left(\frac{1}{a}\right)$

Case $2 \quad r<0 \quad 0 \leqslant \theta<\delta, \quad 2 \pi-\delta<\theta \leqslant 2 \pi$

So if we allow $r \in \mathbb{R}$, then $r=1-a \cos \theta$ con be defined fa all $\theta \in[0,2 \pi]$ \& the curve becomes a conure wish self-intersectivn.

Coordinates Systems $\bar{u} \mathbb{R}^{3}$ (generalizing Polar conduates)

Cylindrical Coordinates

$$
(x, y, z) \longrightarrow(r, \theta, z)
$$

when e $\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right.$ ie. (r, θ) is polar condensates fou $x y$-plane.

eg: $r=r_{0}$ constant
is the equation for the ceflumder in the figure.

eg Helix $\quad(a \cos t, a \sin t, b t) \quad(a>0, b \in \mathbb{R})$
can be represented in cyfindral condiuates by

$$
\left\{\begin{array}{l}
r=a \\
\theta=t \\
z=b t
\end{array} \quad t \in[0,2 \pi]\right.
$$

(Ex: Sketch the curve)

Spherical Condüates
$P=(x, y, z) \in \mathbb{R}^{3}$ can lee represented by
$\rho=$ distance from origin $=\sqrt{x^{2}+y^{2}+z^{2}}$
$\theta=\theta$ as in cylindrical coordinates
$\phi=$ angle from priticue z-axis to $\overrightarrow{O P}$.

Remark: $\phi \in[0, \pi]$

Fanulae

$$
\left\{\begin{array}{l}
x=\rho \sin \phi \cos \theta \\
y=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{array}\right.
$$

(Tutrial for Egs)

