Parametric Form of a line in $\mathbb{R}^{n} \quad(n=3$ ponticulars
Let $L=a$ bine in \mathbb{R}^{n}
$\vec{a}=a$ point on L
$\vec{v}=$ a direction vecta of L
Then
parametric farm of L

$$
\vec{x}=\vec{a}+t \stackrel{\rightharpoonup}{v}
$$

$t \in \mathbb{R}$ called a parameter $(L$ is parametrized by $t \in \mathbb{R})$
ie.

$$
\begin{aligned}
\left(x_{1}, \cdots, x_{n}\right) & =\left(a_{1}, \cdots, a_{n}\right)+t\left(v_{1}, \cdots, v_{n}\right) \\
& =\left(a_{1}+t v_{1}, \cdots, a_{n}+t v_{n}\right)
\end{aligned}
$$

ie.

$$
\left\{\begin{array}{c}
x_{1}=a_{1}+t v_{1} \\
\vdots \\
x_{n}=a_{n}+t v_{n}
\end{array} \quad t \in \mathbb{R}\right.
$$

eg A line L in \mathbb{R}^{3} passes through

$$
A=(1,2,3), \quad B=(-1,3,5)
$$

Som:
(Choose $\vec{a}=A \cdot a \cdot B$ as vesta

$$
\vec{V}=\overrightarrow{A B} a \overrightarrow{B A})
$$

A parametrization of L is $\vec{X}=(1,2,3)+t((-1,3,5)-(1,2,3))$

$$
=(1,2,3)+t(-2,1,2)
$$

(In high schorl notations: $x=1-2 t, y=2+t, z=3+2 t$)

Remarks: (i) Parametric form is not unique (many choice as in eg)
(ii) From (*), we get symmetric fam:

$$
\begin{aligned}
& \frac{x-1}{-2}=\frac{y-2}{1}=\frac{z-3}{2}(=t) \\
\Leftrightarrow & \left\{\begin{array}{l}
x-1=-2(y-2) \\
2(y-2)=z-3
\end{array}\right.
\end{aligned}
$$

Planes in \mathbb{R}^{3}
(1) $P=a$ plane $\bar{m} \mathbb{R}^{3}$
$\vec{a}=a$ point on P

$\vec{u}, \vec{v}=2$ linearly independent vectas on P.

Then Parametric From of P

$$
\vec{x}=\vec{a}+s \vec{u}+t \vec{v}
$$

two ponameters
(2) $\quad P=$ a plane $\bar{u} \mathbb{R}^{3}$
$\vec{a}=a$ point on P
$\vec{n}=a$ namal vecta of P

(ie. \vec{n} is perpendicular to P)

Let $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right), \vec{n}=\left(n_{1}, n_{2}, n_{3}\right)$ and $\vec{x}=(x, y, z)$

$$
\vec{x} \in P \Leftrightarrow(\vec{x}-\vec{a}) \perp \vec{n}
$$

$$
\begin{aligned}
& \Leftrightarrow(\vec{x}-\vec{a}) \cdot \vec{n}=0 \quad(\Leftrightarrow \vec{x} \cdot \vec{n}=\vec{a} \cdot \vec{n} \\
& \Leftrightarrow\left(x-a_{1}, y-a_{2}, z-a_{3}\right) \cdot\left(n_{1}, n_{2}, n_{3}\right)=0 \\
& \Leftrightarrow n_{1} x+n_{2} y+n_{3} z=\underbrace{n_{1} a_{1}+n_{2} a_{2}+n_{3} a_{3}}_{\text {constant }}
\end{aligned}
$$

Equation of P (general in \mathbb{R}^{3})

$$
n_{1} x+n_{2} y+n_{3} z=c
$$

$$
(c=\vec{a} \cdot \vec{n})
$$

provided $\vec{n}=\left(n_{1}, n_{2}, n_{3}\right) \neq \overrightarrow{0}$.
eq: Suppose P is a plane (in $\left.\mathbb{R}^{3}\right)$ passing through

$$
A=(0,0,1), \quad B=(0,2,0), \quad C=(-1,1,0)
$$

Represent P using (i) parametric fam; (ii) equation.
Sole:

$$
\begin{aligned}
& \text { (i) }\binom{\text { Pick } \vec{a}=A, B a c}{\vec{u}, \vec{v}=\overrightarrow{A B} \& \overrightarrow{A C} a \cdots} \\
& \overrightarrow{A B}=(0,2,0)-(0,0,1)=(0,2,-1) \\
& \overrightarrow{A C}=(-1,1,0)-(0,0,1)=(-1,1,-1)
\end{aligned}
$$

Then a parametric farm of ρ is

$$
\vec{X}=(0,0,1)+s(0,2,-1)+t(-1,1,-1) \quad(s, t \in \mathbb{R})
$$

(ii) Take $\vec{n}=\vec{u} \times \vec{v}(\vec{u}, \vec{v}$ as in (i) $)$

$$
=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
0 & 2 & -1 \\
-1 & 1 & -1
\end{array}\right|=(-1,1,2) \quad \text { (check!) }
$$

\therefore Equation of $P:((x, y, z)-(0,0,1)) \cdot(-1,1,2)=0$

$$
\cdots \Leftrightarrow-x+y+z z=2 \quad \text { (check!) }
$$

eg: Find the distance between $A=(2,1,1)$ and the

$$
\begin{equation*}
P:-x+2 y-z=-4 \tag{*}
\end{equation*}
$$

Sole: From (*)

(by the understanding of the equation of P.)

$$
\stackrel{\rightharpoonup}{n}=(-1,2,-1) \perp p
$$

Consider the lime L (passing A \& in the direction of \vec{n})

$$
\vec{X}=\vec{A}+t \vec{n}=(2,1,1)+t(-1,2,-1)=(2-t, 1+2 t, 1-t)
$$

Then the intersection point \vec{a} of $L \& P$ is the point closest to A
To finch \vec{a}, put $\vec{x}=(2-t, 1+2 t, 1-t)$
into $(t) \quad-(2-t)+2(1+2 t)-(1-t)=-4$

$$
\begin{aligned}
& \Rightarrow \quad t=-\frac{1}{2} \quad(\text { check! }) \\
\therefore \quad \vec{a} & =\left(2-\left(-\frac{1}{2}\right), 1+2\left(-\frac{1}{2}\right), 1-\left(-\frac{1}{2}\right)\right)=\left(\frac{5}{2}, 0, \frac{3}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { distance between } A \& P & =\text { distance between } A \& \vec{a} \\
& =\sqrt{\left(2-\frac{5}{2}\right)^{2}+(1-0)^{2}+\left(1-\frac{3}{2}\right)^{2}} \\
& =\frac{\sqrt{6}}{2} \quad \text { (check!) }
\end{aligned}
$$

eg: Line in \mathbb{R}^{3} by equations
Two planes intersect at a line (if not empty)

$$
\left\{\begin{array}{l}
x+y+6 z=6 \\
x-y-2 z=-2
\end{array} \quad\binom{(1,1,6) \&(1,-1,-2)}{\text { are linearly riddle. }}\right.
$$

is a live. Then Gaussian Elimination will give us a parametric fam of the lime, ie solving the system of linear equation by setting a variable to be a ponameter: eg

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
-4 \\
1
\end{array}\right] \quad(b y \text { stthig } z=t) \quad \text { (linear algebra!) }
$$

eg: How about 3 linear equations?
Then Linear Alg \Rightarrow Case 1: unique solution, ie., úfersection = \{point\} . ~
Case 2: Infüitely navy solutions; could be a live or a plane
Cane 3: No solution, ie. no intersection
eq.

infficitely many solutions

(Ex: Try otter situations)

Remark: In n dim., a (hyper) plane is given by $\vec{x} \cdot \vec{\eta}=c$. as in planes in $\mathbb{R}^{3} \quad$ (dim (type plane) $\left.)=n-1\right)$

Then linear algebra \Rightarrow all possible situations fa intersections of (hyper)planes.
(Discussion omitted)

Curves in \mathbb{R}^{n}

Doff: Let $I \subset \mathbb{R}$ be an interval. $A\left(\right.$ contimenonen) curve in \mathbb{R}^{n} is a contincioses (vecter-valued) function

$$
\vec{X}=I \rightarrow \mathbb{R}^{n}
$$

ie. $t \in I, \vec{X}(t)=\left(x_{1}(t), \cdots, x_{n}(t)\right) \in \mathbb{R}^{n}$ such that every component function $X_{i}(t)$ is continuous $(i=1, \cdots, n)$
legs (i) $\vec{x}:[-1,1) \rightarrow \mathbb{R}^{2}$

$$
\begin{gathered}
\vec{x}(t)=\left(t, t^{2}\right) \\
{\left[x=t, y=t^{2} \Rightarrow y=x^{2}\right]}
\end{gathered}
$$

(ii) Of cure, parametric fam of a line gives a "carve"

$$
\vec{X}(t)=\vec{p}+t \vec{q} \quad t \in(-\infty, \infty)
$$

Defy: A curve $\vec{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is said to be
(i) closed if $\vec{x}(a)=\vec{x}(b)$
(ii) simple if $\vec{x}\left(t_{1}\right) \neq \vec{x}\left(t_{2}\right)$ fa $a \leqslant t_{1}<t_{2} \leqslant b$ except possibly at $t_{1}=a \& t_{2}=b$.
eq:

Closed, not simple
not closed, simple

Closed a simple
(süuple closed cone)

Thu: Let $\vec{x}(t)=\left(x_{1}(t), \cdots, x_{n}(t)\right)$. Then
(1) $\lim _{t \rightarrow a} \vec{X}(t)=\left(\lim _{t \rightarrow a} X_{1}(t), \cdots, \lim _{t \rightarrow a} X_{n}(t)\right)$
(2) $\vec{x}^{\prime}(t) \stackrel{\text { def }}{=} \lim _{h \rightarrow 0} \frac{\vec{x}(t+h)-\vec{x}(t)}{h}=\left(x_{1}^{\prime}(t), \cdots, x_{n}^{\prime}(t)\right)$
(provided limits exist)

Def: $\vec{X}^{\prime}(a)=$ tangent vector of $\vec{X}(t)$ at $t=a$.

Picture:

Physics: If $\vec{x}(t)=$ displacement at time t
Then $\vec{x}^{\prime}(t)=$ velocity (vecta) at time t

$$
\vec{x}^{\prime \prime}(t)=\text { acceleration (vecta) }
$$

$$
\left\|\vec{x}^{\prime}(t)\right\|=\text { speed } .
$$

eq: $\quad \vec{x}(t)=(\cos t, \sin t), \quad 0 \leqslant t \leqslant 2 \pi$
$\left(\begin{array}{cc}\prime \prime & \prime \prime \\ x & y\end{array} \Rightarrow x^{2}+y^{2}=1\right.$ the unit circle)

(Simple closed)

$$
\vec{x}^{\prime}(t)=(-\sin t, \cos t)
$$

is the tangent nectar.
eg $\vec{x}:[1, \infty) \rightarrow \mathbb{R}^{2}$

$$
\left.\begin{array}{rl}
\vec{x}(t) & =\left(\frac{1}{t}, \frac{1}{t^{2}}\right) \\
& \left(\begin{array}{ll}
11 & 11 \\
x & y
\end{array} \Rightarrow y=x^{2}\right.
\end{array}\right), ~ l
$$

$$
\lim _{t \rightarrow \infty} \vec{X}(t)=(0,0)
$$

(not incluced in tho cimue)

Rules
Let $\vec{x}(t), \vec{y}(t)$ be conves in $\mathbb{R}^{n}, \quad c \in \mathbb{R}$ be a constaut $f(t)$ be a real-valued function. Then
(1) $(\vec{x}(t)+\vec{y}(t))^{\prime}=\vec{x}^{\prime}(t)+\vec{y}^{\prime}(t)$
(2) $(c \vec{x}(t))^{\prime}=c \vec{x}^{\prime}(t)$
(3) $(f(t) \vec{x}(t))^{\prime}=f^{\prime}(t) \vec{x}(t)+f(t) \vec{x}^{\prime}(t)$
(4) $(\vec{x}(t) \cdot \vec{y}(t))^{\prime}=\vec{x}^{\prime}(t) \cdot \vec{y}(t)+\vec{x}(t) \cdot \vec{y}^{\prime}(t)$
(5) Far $n=3$,

$$
(\vec{x}(t) \times \vec{y}(t))^{\prime}=\vec{x}^{\prime}(t) \times \vec{y}(t)+\vec{x}(t) \times \vec{y}^{\prime}(t)
$$

Remark: (3), (4) \& (5) are oll called product rules.

