MATH1050A Proof-writing Exercise 3

Advice.

- Most of the questions are concerned with the method of proof-by-contradiction. Some are concerned with the handling of of 'there exists'.
- When doing proofs, remember to adhere to definition, always. Study the handouts *Basic results on divisibility*, and *Rationals and irrationals*.
- Besides the handout mentioned above, Question (3), Question (4), in Assignment 2 and Question (10) in Assignment 3 are also suggestive on what it takes to give the types of argument meant to be written here, and on the level of rigour required.
- 1. Apply proof-by-contradiction to justify the statements below:
 - (a) Let a, b be complex numbers. Suppose $a^4 + a^3b + a^2b^2 + ab^3 + b^4 \neq 0$. Then at least one of a, b is non-zero.
 - (b) Let a be a real number and b be a complex number. Suppose $a^3|b| > 2$. Then $a^6 + 9|b|^2 > 6$.
 - (c) Let ζ be a complex number. Suppose that $|\zeta| \leq \varepsilon$ for any positive real number ε . Then $\zeta = 0$.
- 2. In this question, take for granted that $\sqrt{2}, \sqrt{3}$ are irrational numbers.

Apply proof-by-contradiction to justify the statements below:

(a) $\sqrt{2} + \sqrt{3}$ is an irrational number.

Remark. *Hint.* Write $r = \sqrt{2} + \sqrt{3}$. Can you re-express one of $\sqrt{2}$, $\sqrt{3}$ as a fractional expression whose numerator and denominator involve only integers and the non-negative integral powers of r?

(b) $\sqrt{3} - \sqrt{2}$ is an irrational number.

Remark. See if you can generalize the argument to prove the statement (\sharp) :

- (#) Suppose a, b are non-zero rational numbers. Then $a\sqrt{2} + b\sqrt{3}$ is an irrational number.
- 3. Take for granted the validity of Euclid's Lemma where appropriate and necessary. You may also take for granted that 2, 3, 5 are prime numbers.

Apply proof-by-contradiction to justify the statements below:

- (a) $\sqrt{3}$ is an irrational number.
- (b) $\sqrt[3]{5}$ is an irrational number.
- (c) $\sqrt[3]{4}$ is an irrational number.
- 4. Apply proof-by-contradiction to justify the statements below:
 - (a) 2 is not divisible by 3.

Remark. Apply the definition for the notion of divisibility to obtain an equality with 2 on one side and an expression involving 3 and some intger on the other side. Then obtain a contradiction by considering the magnitudes of the integers involved.

- (b) \diamond 3 is not divisible by 2.
- (c) $\checkmark \sqrt{6}$ is irrational.

Remark. Take for granted the validity of Euclid's Lemma where appropriate and necessary. You may also need the results described in the previous parts.

- 5. We recall/introduce the definitions for the notions of *algebraicity* and *transcendence* for complex numbers:
 - Let α be a complex number. We say that α is algebraic if there exists some non-constant polynomial f(x) whose coefficients are rational numbers such that $f(\alpha) = 0$.
 - Let τ be a complex number. We say that τ is transcendental if τ is not algebraic.

- (a) Prove the statements below:
 - i.^{\diamond} Let α be a positive real number. Suppose α is algebraic. Then $\sqrt[3]{\alpha}$ is algebraic.
 - ii.^{*} Let α be a non-zero complex number. Suppose α is algebraic. Then $\frac{1}{\alpha}$ is algebraic.
 - iii.^{\heartsuit} Let α be a complex number. Suppose α is algebraic. Then α^2 is algebraic.
- (b) Prove the statements below:
 - i. Let τ be a positive real number. Suppose τ is transcendental. Then τ^3 is transcendental.
 - ii. Let τ be a non-zero complex number. Suppose τ is transcendental. Then $\frac{1}{\tau}$ is transcendental.
 - iii. Let τ be a positive real number. Suppose τ is transcendental. Then $\sqrt{\tau}$ is transcendental.
- 6.^{\heartsuit} Let α, β be complex numbers, a_0, a_1, b_0, b_1 are rational numbers, and $f(x) = x^2 + a_1 x + a_0, g(x) = x^2 + b_1 x + b_0$. Suppose $f(\alpha) = 0$ and $g(\beta) = 0$.

Define $\gamma = \alpha \beta$.

- (a) Express $\gamma \alpha$ in the form $A_1 + A_2 \gamma + A_3 \alpha + A_4 \beta$. Here A_1, A_2, A_3, A_4 are appropriate rational numbers, possibly given in terms of a_0, a_1, b_0, b_1 .
- (b) Express $\gamma\beta$ in the form $B_1 + B_2\gamma + B_3\alpha + B_4\beta$. Here B_1, B_2, B_3, B_4 are appropriate rational numbers, possibly given in terms of a_0, a_1, b_0, b_1 .
- (c) Express γ^2 in the form $C_1 + C_2\gamma + C_3\alpha + C_4\beta$. Here C_1, C_2, C_3, C_4 are appropriate rational numbers, possibly given in terms of a_0, a_1, b_0, b_1 .
- (d) Express γ^3 in the form $D_1 + D_2\gamma + D_3\gamma^2 + D_4\alpha + D_5\beta$. Here D_1, D_2, D_3, D_4, D_5 are appropriate rational numbers, possibly given in terms of a_0, a_1, b_0, b_1 .
- (e) Express γ^4 in the form $E_1 + E_2\gamma + E_3\gamma^2 + E_4\gamma^3 + E_5\alpha + E_6\beta$. Here $E_1, E_2, E_3, E_4, E_5, E_6$ are appropriate rational numbers, possibly given in terms of a_0, a_1, b_0, b_1 .
- (f) Prove that there exist some rational numbers c_0, c_1, c_2, c_3 such that $\gamma^4 + c_3\gamma^3 + c_2\gamma^2 + c_1\gamma + c_0 = 0$.
- (g) Prove that γ is algebraic.

(*Hint.* The work in the previous parts constitute the relevant roughwork for the argument for this part.)

Remark. Using a similar argument, we can also prove that $\alpha + \beta$ is algebraic.

What is described above is a 'baby case' for a more general result:

(#) For any $\alpha, \beta \in \mathbb{C}$, if α, β are algebraic then $\alpha + \beta, \alpha\beta$ are algebraic.

With the result (\sharp) , we can deduce that the set of all algebraic numbers constitute a field.

7. For each
$$n \in \mathbb{N} \setminus \{0\}$$
, define $A_n = \sum_{j=1}^n \frac{1}{j}$, $B_n = \sum_{k=1}^n \frac{1}{2k}$, $C_n = \sum_{k=1}^n \frac{1}{2k-1}$.

- (a) i. Prove that $B_n = \frac{1}{2}A_n$ and $C_n = A_{2n} \frac{1}{2}A_n$ for any $n \in \mathbb{N} \setminus \{0\}$.
 - ii. Prove that $C_n B_n \ge \frac{1}{2}$ for any $n \in \mathbb{N} \setminus \{0, 1\}$.
- (b) By applying proof-by-contradiction, or otherwise, prove that $\{A_n\}_{n=1}^{\infty}$ does not converge in \mathbb{R} .

Remark. Take for granted the result (\star) about inequality for limits of infinite sequences:

(*) Let $\{x_n\}_{n=0}^{\infty}$ be an infinite sequence of real number, and t be a real number. Suppose $x_n \ge t$ for any $n \in \mathbb{N}$. Also suppose $\{x_n\}_{n=0}^{\infty}$ converges in \mathbb{R} . Then $\lim_{n \to \infty} x_n \ge t$.