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Abstract

In this course, the development of the spatially homogeneous theory to the Boltz-

mann equation will be briefly introduced, especially for the well-posedness result of

the Cauchy problem in the space of probability measure. On the other side, the

numerical simulation about the homogeneous Boltzmann equation, mainly the de-

terministic Spectral Method will also be presented; furthermore, some corresponding

stability/error analysis frameworks will be discussed in a suitable manner.

1 Personal Statement

The lecture note is based on the MATH-6042 course delivered by the author in the

Term 2, 2021-2022 at CUHK. The main prerequisites are a reasonable acquaintance with

functional analysis, i.e., elementary topology, Fourier transform, and so forth. Prelim-

inary knowledge about the Boltzmann equation is literally preferred, though the brief

introduction will be provided at the beginning.

Due to the current limitation of the author, most likely, there are still at places in-

adequacies, inconsistency of notations, inadvertently omitted references... Therefore, the

lecture note will be constantly updated and frequently uploaded on the website of the

author, and hopefully continue to cover up the most recent results of this topic with time

evolution.

Any correction and comment will be very welcomed from the readers for further im-

provement of the lecture note.
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2 Introduction of Boltzmann Equation

2.1 The Spatially Homogeneous Boltzmann Equation

In the spatially homogeneous theory of the Boltzmann equation, one is interested in

the solution f(t, x, v) which does not depend on the x space variable. This view of point

is pretty common in physics, especially when it comes to the problems focusing on the

collision operator, as the collision integral operator only acts on the velocity dependence.

On the other hand, the interests towards the spatially homogeneous study also arise from

the numerical analysis, since almost all numerical schemes succeed from the splitting of

the transport step and collision step.

In this case, the homogeneous Boltzmann equation in R3 reads:

∂tf(t, v) = Q(f, f)(t, v), (2.1)

with the non-negative initial condition,

f(0, v) = F0(v), (2.2)

where the unknown f = f(t, v) is regarded as the density function of a probability distri-

bution, or more generally, a probability measure; and the initial datum F0 is also assumed

to be a non-negative probability measure on R3.

The right hand side of (2.1) is the so-called Boltzmann collision operator,

Q(f, f)(v) =

∫
R3

∫
S2
Bσ(v − v∗, σ) [f(v

′)f(v′∗)− f(v)f(v∗)] dσ dv∗

=

∫
R3

∫
S2
Bω(v − v∗, σ) [f(v

′)f(v′∗)− f(v)f(v∗)] dω dv∗,

(2.3)

where (v′, v′∗) and (v, v∗) represent the velocity pairs before and after a collision, which

satisfy the conservation of momentum and energy:

v′ + v′∗ = v + v∗, |v′|2 + |v′∗|2 = |v|2 + |v∗|2, (2.4)

so that (v′, v′∗) can be expressed in terms of (v, v∗) as

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ,

or v′ = v − v[(v − v∗ · ω)]ω, v′∗ = v + v[(v − v∗ · ω)]ω,
(2.5)

where both of σ and ω are a vector varying over the unit sphere S2. And this also easily

implies the relations

v · v∗ = v′ · v′∗, |v − v∗| = |v′ − v′∗|, (v − v∗) · ω = −(v′ − v′∗) · ω. (2.6)

and

|⟨v − v∗, ω⟩| = |v − v∗| cosα = |v − v∗| cos
(
π − θ

2

)
= |v − v∗| sin

θ

2
, (2.7)

where α denotes that angle between v − v∗ and ω.

Next, we have a more general relation between the σ- and ω- representation in the

sense that,
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Figure 1: Velocity and unit vector during a classical elastic collision.

Lemma 2.1. For the change of variables:

σ =
v − v∗
|v − v∗|

− 2

〈
v − v∗
|v − v∗|

, ω

〉
, (2.8)

it has the Jacobian
dσ

dω
= 2d−1

∣∣∣∣〈 v − v∗
|v − v∗|

, ω

〉∣∣∣∣d−2

. (2.9)

Proof. Fix the unitary vector q̂ = v−v∗
|v−v∗| and

〈
v−v∗
|v−v∗| , ω

〉
= q̂ · ω, then the change of

variables can be regarded as a map σ(ω) : Sd−1 7−→ Sd−1 give by

σ(ω) = q̂ − 2 (q̂ · ω)ω. (2.10)

Let Oq̂ be the orthogonal space to q̂, α be the angle between q̂ and ω, and θ be the angle

between q̂ and σ. In this way, one may write

ω = cosαq̂ + ωo, σ = cos θq̂ + σo (2.11)

where ωo, σo ∈ Oq̂. Using the spherical coordinates with north pole given by q̂, the

measures dω and dσ are given by

dω = sind−2 αdω̂odα, dσ = sind−2 θdσ̂odθ (2.12)

where the measures dω̂o and dσ̂o are the Lebesgue measure in Sd−2(q̂) parameterized with

the vectors ωo, σo respectively. Directly from the expression of the map, we find,

cos θ = q̂ · σ = 1− 2 (q̂ · ω)2 = 1− 2 cos2 α. (2.13)

Then, it follows by direct differentiation that

− sin θdθ = 4 cosα sinαdα. (2.14)

Now, choose a orthonormal base {ξj}d−2
j=1 for Oq̂. Compute again using the explicit ex-

pression of the map

σo =

d−2∑
j=1

(σ · ξj) ξj = −2 (q̂ · ω)
d−2∑
j=1

(ω · ξj) ξj

=− 2 (q̂ · ω)ωo = −2 cosαωo.

(2.15)
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Thus, ω̂o = σ̂o, and as a consequence, dω̂o = dσ̂o. Gathering these relations all together

and using the basic trigomometry

dω =

(
sinα

sin θ

)d−3
dσ

4| cosα|
=

dσ

2d−1| cosα|d−2
. (2.16)

This completes the proof.

Lemma 2.2. Fix σ ∈ Sd−1 and q = v − v∗, the map u : Rd 7−→ Rd given by

u(q) =
q + |q|σ

2
(2.17)

has Jacobian
du

dq
=

1 + σ · q̂
2d

. (2.18)

Proof. Choose an orthonormal base {σ, ξj} with 2 ≤ j ≤ d. Then, the coordinates of this

change of variables are

z1 =z · σ =
1

2
(q · σ + |q|) = 1

2
(q1 + |q|) ,

zj =z · ξj =
1

2
qj , j = 2, ..., d.

(2.19)

Thus,
∂z1
∂q1

=
1

2
(1 + q̂ · σ) , ∂zj

∂ql
=

1

2
δjl, j = 2, ..., d. (2.20)

and, therefore,

dz

dq
=

d∏
j=1

∣∣∣∣∂zj∂qj

∣∣∣∣ = 1 + q̂ · σ
2d

. (2.21)

2.2 The Boltzmann collision kernel.

The collision kernel B is a non-negative function that depends only on |v − v∗| and
cosine of the deviation angle θ, whose specific form can be determined from the inter-

molecular potential using classical scattering theory. For example, in the case of Inverse

Power Law Potentials U(r) = r−(ℓ−1), 2 < ℓ < ∞, where r is the distance between two

interacting particles, B can be separated as the kinetic part and angular part:

B(v − v∗, σ) = B(|v − v∗|, cos θ) = b(cos θ)Φ(|v − v∗|), cos θ =
σ · (v − v∗)

|v − v∗|
, (2.22)

where the kinetic part

Φ(|v − v∗|) = |v − v∗|γ =


γ > 0, Hard potential,

γ = 0, Maxwellian gas,

γ < 0, Soft potential.

γ =
ℓ− 5

ℓ− 1
> −3 (when d = 3),
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and the angular part

sind−2 θb(cos θ)
∣∣
θ→0+

∼ Kθ−1−ν , 0 < ν =
2

ℓ− 1
< 2 (when d = 3). (2.23)

The kernel (2.22) encompasses a wide range of potentials, among which we mention

three extreme cases [8]:

(i) ℓ = ∞, γ = 1, ν = 0 corresponds to the hard spheres, where B is only proportional

to |v − v∗|,
B(|v − v∗|, cos θ) = K|v − v∗|, K > 0; (2.24)

(ii) ℓ = 2, γ = −3, ν = 2 corresponds to the Coulomb interaction, where B is given by

the famous Rutherford formula,

B(|v − v∗|, cos θ) =
1

|v − v∗|3 sin4(θ/2)
; (2.25)

(iii) ℓ = 5, γ = 0, ν = 1
2 corresponds to the literally physical Maxwellian gas, where B

does not depend on relative velocity |v − v∗|,

B(|v − v∗|, cos θ) = b

(
v − v∗
|v − v∗|

· σ
)

= b(cos θ). (2.26)

However, instead of this very special case above, we are interested in the more general

case B = b(cos θ), not depending on |v − v∗| that,

γ = 0, 0 < ν < 2, (2.27)

which is called Maxwellian molecules type.

The range of deviation angle θ, namely the angle between pre- and post-collisional ve-

locities, is a full interval [0, π], but it is customary to restrict it to [0, π/2] mathematically,

replacing b(cos θ) by its “symmetrized” version [21]:

[b(cos θ) + b(cos (π − θ))]10≤θ≤π
2
, (2.28)

which amounts more or less to forbidding the exchange of particles.

Another physically interesting example that is not explicit at all has been called

Debye-Yukawa Potential U(r) = e−r/r, also asymptotically behaving as θ → 0:

sind−2 θB(|v − v∗|, cos θ)
∣∣∣
θ→0+

∼ K|v − v∗|θ−1| log θ−1|. (2.29)

2.3 Cutoff VS Non-cutoff

As it has been long known, the main difficulty in establishing the well-posedness result

for Boltzmann equation is that the singularity of the collision kernel b is not locally

integrable in σ ∈ S2. To avoid this, H. Grad gave the integrable assumption on the

collision kernel bc by a “Cutoff ” near singularity:∫
S2
bc

(
v − v∗
|v − v∗|

· σ
)
dσ = 2π

∫ π
2

0

bc(cos θ) sin θ dθ < ∞. (2.30)
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However, the full singularity condition for the collision kernel with Non-cutoff As-

sumption is implicitly defined for the angular collision part b(cos θ), which asymptotically

behaves as θ → 0+,

sin θb(cos θ)
∣∣
θ→0+

∼ Kθ−1−ν , ν =
2

ℓ− 1
, 0 < ν < 2 and K > 0, (2.31)

or in “symmetrized” manner,

∃α0 ∈ (0, 2], such that

∫ π
2

0

sinα0

(
θ

2

)
b(cos θ) sin θdθ < ∞, (2.32)

which can handle the strongly singular kernel b in (2.31) with some 0 < ν < 2 and

α0 ∈ (ν, 2]. Besides, we further illustrate that the non-cutoff assumption (2.32) can be

rewritten as

(1− s)
α0
2 b(s) ∈ L1[0, 1), for α0 ∈ (0, 2], (2.33)

by means of the transformation of variable s = cos θ in the symmetric version of b. As

mentioned in [15, Remark 1], the full non-cutoff assumption (2.32), or equivalently (2.33),

is the extension of the mild non-cutoff assumption of the collision kernel b used in [14],

namely,

(1− s)
α0
4 (1 + s)

α0
4 b(s) ∈ L1 (−1, 1) , for α0 ∈ (0, 2]. (2.34)

2.4 The Weak Formulation and Conservation Law

To derive the weak formulation, a universal tool (so-called Pre-postcollisional change of

variables) is frequently used, which is an involutive change of variables with unit Jacobian,

(v, v∗, σ) → (v′, v′∗, q̂), (2.35)

where q̂ is the unit vector along the relative velocity q := v − v∗,

q̂ =
v − v∗
|v − v∗|

. (2.36)

On the other hand, since σ = (v′−v′∗)/|v′−v′∗|, the change of variables (2.35) formally

amounts to the change of (v, v∗) and (v′, v′∗). Hence, under suitable integrability conditions

on the measurable function F ,∫
S2

∫
R3

∫
R3

B(|v − v∗|, q̂ · σ)F (v, v∗, v
′, v′∗) dv dv∗ dσ

=

∫
S2

∫
R3

∫
R3

B(|v − v∗|, q̂ · σ)F (v, v∗, v
′, v′∗) dv

′ dv′∗ dσ

=

∫
S2

∫
R3

∫
R3

B(|v − v∗|, q̂ · σ)F (v′, v′∗, v, v∗) dv dv∗ dσ,

(2.37)

where the fact |v′ − v′∗| = |v − v∗|, σ · q̂ = q̂ · σ is used to keep the arguments of collision

kernel B(v − v∗, σ) = B(|v − v∗|, q̂ · σ) unchanged. Note that the change of variables

(v, v∗) → (v′, v′∗) works for a fixed ω but is illegal for any given σ.

With the help of this microreversiblity of velocity from (v, v) to (v′, v′∗), which leaves

the collision kernel B invariant, we can obtain the following weak form for the Boltzmann

collision operator.

7



Proposition 2.3. For any test function ϕ that is an arbitrarily continuous function of

the velocity v,∫
R3

Q(f, f)ϕdv =

∫
R3

∫
R3

∫
S2
B(v − v∗, σ)(f

′f ′
∗ − ff∗)ϕ dσ dv∗ dv

=

∫
R3

∫
R3

∫
S2
B(v − v∗, σ)ff∗(ϕ

′ − ϕ) dσ dv∗ dv

=
1

2

∫
R3

∫
R3

∫
S2
B(v − v∗, σ)ff∗(ϕ

′ + ϕ′
∗ − ϕ− ϕ∗) dσ dv∗ dv

=
1

4

∫
R3

∫
R3

∫
S2
B(v − v∗, σ)(f

′f ′
∗ − ff∗)(ϕ+ ϕ∗ − ϕ′ − ϕ′

∗) dσ dv∗ dv.

(2.38)

2.5 Boltzmann’s H–Theorem and Equilibrium State

Recall the weak formulation (2.38) of the Boltzmann equation as in (2.3), there is

an immediate consequence for a solution f to the Boltzmann equation that, whenever ϕ

satisfies the functional equation,

∀(v, v∗, σ) ∈ R3 × R3 × S2, ϕ(v′) + ϕ(v′∗) = ϕ(v) + ϕ(v∗), (2.39)

then, we at least formally have,

d

dt

∫
R3

f(t, v)ϕ(v) dv =

∫
R3

Q(f, f)ϕ dv = 0, (2.40)

and this kind of ϕ is usually called the collision invariant.

Since the mass, momentum and energy are conserved during the classical elastic col-

lisions, it is natural to find that the functions 1, vj , 1 ≤ j ≤ 3, and |v|2 and any linear

combination of them are the collision invariants, which can be actually shown as the only

collision invariants. Together with the weak form, this leads to the formal conservation

law of the Boltzmann equation,

d

dt

∫
R3

f(t, v)

 0

vj

|v|2

 dv =

∫
R3

Q(f, f)(t, v)

 0

vj

|v|2

 dv = 0, 1 ≤ j ≤ 3. (2.41)

In particular, at a given time t, one can define the local density ρ, the local macroscopic

velocity u, and the local temperature T , by

ρ =

∫
R3

f(t, v) dv, ρu =

∫
R3

f(t, v)v dv, ρ|u|2 + dρT =

∫
R3

f(t, v)|v|2 dv, (2.42)

then the equilibrium is the Maxwellian distribution,

M(v) = Mf (v) =
1

(2πT )3/2
e−

|v−u|2
2T . (2.43)
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If not caring about the integrability issues, we select the test function ϕ = log f into

the weak form (2.38), and consider the properties of the logarithm function, to find that

−
∫
R3

Q(f, f) ln f dv =D(f)

=
1

4

∫
R3

∫
R3

∫
S2
B(v − v∗, σ)(f

′f ′
∗ − ff∗) ln

f ′f ′
∗

ff∗
≥ 0

(2.44)

due to the fact that the function (X,Y ) 7−→ (X −Y )(lnX − lnY ) is always non-negative.

Thus, if we introduce Boltzmann’s H–functional,

H(f) =

∫
R3

f ln f dv, (2.45)

then the H(f) will evolve in time because of the collisional effect that

d

dt
H(f(t, ·)) = −D(f(t, ·)) ≤ 0, (2.46)

which is the well-known Boltzmann’s H–Theorem: the H–functional, or entropy, is non-

increasing with time evolution.

And the equality holds if and only if ln f is a collision invariant, i.e., f = exp(a+ bv+

c|v|2) with a, b, c being all constants.

2.6 Fourier Transform of the Collision Operator (Bobylev Iden-

tity)

The Fourier transformation has been widely used in the analysis of various kind of

partial differential equations. However, it used to be very painful to find an elegant

representation of the Boltzmann equation in the Fourier space, even though the Boltzmann

operator possesses a nice weak formulation. Thanks to A. V. Bobylev, this problem turned

out not as intricate as one may imagine, at least for the Maxwellian molecules. Since then,

the so-called “Bobylev Identity” has become an extremely powerful technique in the study

of the Boltzmann equation, especially in the case of spatially homogeneous theory.

Proposition 2.4. Consider the Boltzmann collision operator Q(g, f) with its collision

kernel B being the Maxwellian molecule b, i.e., B does not depend on |v − v∗|,

Q(f, f)(v) =

∫
R3

∫
S2
b

(
v − v∗
|v − v∗|

· σ
)
[f(v′)f(v′∗)− f(v)f(v∗)] dσ dv∗. (2.47)

Then, the following formulas hold,

F
[
Q+(g, f)

]
(ξ) =

∫
S2
b

(
ξ

|ξ| · σ

)
ĝ(ξ−)f̂(ξ+) dσ,

F
[
Q−(g, f)

]
(ξ) =

∫
S2
b

(
ξ

|ξ| · σ

)
ĝ(0)f̂(ξ) dσ,

(2.48)

where,

ξ+ =
ξ

2
+

|ξ|
2
σ, ξ− =

ξ

2
− |ξ|

2
σ. (2.49)
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Proof. By performing the weak formulation, for any test function ϕ, we have,∫
R3

Q+(g, f)(v)ϕ(v)dv =

∫
R3

∫
R3

∫
S2
b

(
v − v∗
|v − v∗|

· σ
)
g(v∗)f(v)ϕ(v

′) dσ dv∗ dv. (2.50)

Selecting ϕ(v) = e− iv·ξ in the identity above, we have

F
[
Q+(g, f)

]
(ξ)

=

∫
R3

∫
R3

∫
S2
b

(
v − v∗
|v − v∗|

· σ
)
g(v∗)f(v) e

− i( v+v∗
2 +

|v−v∗|
2 σ)·ξ dσ dv∗ dv

=

∫
R3

∫
R3

∫
S2
b

(
v − v∗
|v − v∗|

· σ
)
g(v∗)f(v) e

− i v+v∗
2 ·ξ e− i

|v−v∗|
2 σ·ξ dσ dv∗ dv,

(2.51)

according to the general change of variable,∫
S2
F (k · σ, l · σ) dσ =

∫
S2
F (l · σ, k · σ) dσ, |l| = |k| = 1, (2.52)

due to the existence of an isometry on S2 exchanging l and k, we have, by exchanging the

rule of ξ
|ξ| and

v−v∗
|v−v∗| , ∫

S2
g(v∗)f(v)b

(
v − v∗
|v − v∗|

· σ
)
e− i

|v−v∗|
2 σ·ξ dσ

=

∫
S2
g(v∗)f(v)b

(
ξ

|ξ|
· σ

)
e− i

|ξ|
2 σ·(v−v∗) dσ

(2.53)

Thus,

F
[
Q+(g, f)

]
(ξ)

=

∫
R3

∫
R3

∫
S2
g(v∗)f(v)b

(
v − v∗
|v − v∗|

· σ
)
e− i v+v∗

2 ·ξ e− i
|v−v∗|

2 σ·ξ dσ dv∗ dv

=

∫
R3

∫
R3

∫
S2
g(v∗)f(v)b

(
ξ

|ξ|
· σ

)
e− i v+v∗

2 ·ξ e− i
|ξ|
2 σ·(v−v∗) dσ dv∗ dv

=

∫
R3

∫
R3

∫
S2
g(v∗)f(v)b

(
ξ

|ξ|
· σ

)
e− iv·( ξ

2+
|ξ|
2 σ) e− iv∗·( ξ

2−
|ξ|
2 σ) dσ dv∗ dv

=

∫
S2
b

(
ξ

|ξ|
· σ

)
f̂(ξ+)ĝ(ξ−) dσ,

(2.54)

where, unlike the elastic case, the ξ+ and ξ− are defined as

ξ+ =
ξ

2
+

|ξ|
2
σ, ξ− =

ξ

2
− |ξ|

2
σ. (2.55)

And the formula for F [Q−(g, f)] (ξ) is then easily obtained by the same kind of but

more simpler computations.

For a given probability measure F or its density function f , we define the corresponding

characteristic function φ(ξ) by the Fourier transform:

φ(ξ) = f̂(ξ) :=

∫
R3

e− iv·ξf(v) dv =

∫
R3

e− iv·ξ dF (v), (2.56)
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where the f is regarded as the distribution density function of the cumulative distribution

function F in the sense of Radon-Nikodym derivative.

And its inversion formula by normalization writes

f(v) =

∫
R3

eiv·ξ f̂(ξ) dξ =

∫
R3

eiv·ξφ(ξ) dξ. (2.57)

11



3 Corresponding and Relevant Materials

The following materials are, in chronological order, referred to the development of the

study about the solution to spatially homogeneous Boltzmann equation as a probability

measure, where the Fourier Transformation plays a critical role.
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