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Abstract

In this course, the development of the spatially homogeneous theory to the Boltz-

mann equation will be briefly introduced, especially for the well-posedness result of

the Cauchy problem in the space of probability measure. On the other side, the

numerical simulation about the homogeneous Boltzmann equation, mainly the de-

terministic Spectral Method will also be presented; furthermore, some corresponding

stability/error analysis frameworks will be discussed in a suitable manner.

1 Personal Statement

The lecture note is based on the MATH-6042 course delivered by the author in the

Term 2, 2021-2022 at CUHK. The main prerequisites are a reasonable acquaintance with

functional analysis, i.e., elementary topology, Fourier transform, and so forth. Prelim-

inary knowledge about the Boltzmann equation is literally preferred, though the brief

introduction will be provided at the beginning.

Due to the current limitation of the author, most likely, there are still at places in-

adequacies, inconsistency of notations, inadvertently omitted references... Therefore, the

lecture note will be constantly updated and frequently uploaded on the website of the

author, and hopefully continue to cover up the most recent results of this topic with time

evolution.

Any correction and comment will be very welcomed from the readers for further im-

provement of the lecture note.

2 Teaching Arrangement

So far, a rough arrangement of the 13 lectures is provided as following, where some

adjustments might happen according to the actual progress:
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3 Introduction of Boltzmann Equation

3.1 The Spatially Homogeneous Boltzmann Equation

In the spatially homogeneous theory of the Boltzmann equation, one is interested in

the solution f(t, x, v) which does not depend on the x space variable. This view of point

is pretty common in physics, especially when it comes to the problems focusing on the

collision operator, as the collision integral operator only acts on the velocity dependence.

On the other hand, the interests towards the spatially homogeneous study also arise from

the numerical analysis, since almost all numerical schemes succeed from the splitting of

the transport step and collision step.

In this case, the homogeneous Boltzmann equation in R3 reads:

∂tf(t, v) = Q(f, f)(t, v), (3.1)

with the non-negative initial condition,

f(0, v) = F0(v), (3.2)

where the unknown f = f(t, v) is regarded as the density function of a probability distri-

bution, or more generally, a probability measure; and the initial datum F0 is also assumed

to be a non-negative probability measure on R3.

The right hand side of (3.1) is the so-called Boltzmann collision operator,

Q(f, f)(v) =

∫
R3

∫
S2
Bσ(v − v∗, σ) [f(v

′)f(v′∗)− f(v)f(v∗)] dσ dv∗

=

∫
R3

∫
S2
Bω(v − v∗, σ) [f(v

′)f(v′∗)− f(v)f(v∗)] dω dv∗,

(3.3)

where (v′, v′∗) and (v, v∗) represent the velocity pairs before and after a collision, which

satisfy the conservation of momentum and energy:

v′ + v′∗ = v + v∗, |v′|2 + |v′∗|2 = |v|2 + |v∗|2, (3.4)

so that (v′, v′∗) can be expressed in terms of (v, v∗) as

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ,

or v′ = v − [(v − v∗) · ω]ω, v′∗ = v + [(v − v∗) · ω]ω,
(3.5)

where both of σ and ω are a vector varying over the unit sphere S2.
And this also easily implies the relations

v · v∗ = v′ · v′∗, |v − v∗| = |v′ − v′∗|, (v − v∗) · ω = −(v′ − v′∗) · ω. (3.6)

and

|⟨v − v∗, ω⟩| = |v − v∗| cosα = |v − v∗| cos
(
π − θ

2

)
= |v − v∗| sin

θ

2
, (3.7)

where α denotes that angle between v − v∗ and ω.

Next, we have a more general relation between the σ- and ω- representation in the

sense that,
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Figure 1: Velocity and unit vector during a classical elastic collision.

Lemma 3.1. For the change of variables:

σ =
v − v∗
|v − v∗|

− 2

〈
v − v∗
|v − v∗|

, ω

〉
, (3.8)

it has the Jacobian:
dσ

dω
= 2d−1

∣∣∣∣〈 v − v∗
|v − v∗|

, ω

〉∣∣∣∣d−2

. (3.9)

Proof. Fix the unitary vector q̂ = v−v∗
|v−v∗| and

〈
v−v∗
|v−v∗| , ω

〉
= q̂ · ω, then the change of

variables can be regarded as a map σ(ω) : Sd−1 7−→ Sd−1 give by:

σ(ω) = q̂ − 2 (q̂ · ω)ω. (3.10)

Let Oq̂ be the orthogonal space to q̂, α be the angle between q̂ and ω, and θ be the angle

between q̂ and σ. In this way, one may write

ω = cosαq̂ + ωo, σ = cos θq̂ + σo (3.11)

where ωo, σo ∈ Oq̂. Using the spherical coordinates with north pole given by q̂, the

measures dω and dσ are given by

dω = sind−2 αdω̂odα, dσ = sind−2 θdσ̂odθ (3.12)

where the measures dω̂o and dσ̂o are the Lebesgue measure in Sd−2(q̂) parameterized with

the vectors ωo, σo respectively. Directly from the expression of the map (by inner product

q̂ to Eq. (3.10)), we find

cos θ = q̂ · σ = 1− 2 (q̂ · ω)2 = 1− 2 cos2 α. (3.13)

Then, it follows by direct differentiation that

− sin θdθ = 4 cosα sinαdα. (3.14)
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Now, choose a orthonormal base {ξj}d−2
j=1 for Oq̂. Compute again using the explicit ex-

pression of the map

σo =

d−2∑
j=1

(σ · ξj) ξj = −2 (q̂ · ω)
d−2∑
j=1

(ω · ξj) ξj

=− 2 (q̂ · ω)ωo = −2 cosαωo.

(3.15)

Thus, ω̂o = σ̂o, and as a consequence, dω̂o = dσ̂o. Gathering these relations Eq. (3.12)

and Eq. (3.14) all together, and using the basic trigomometry

dω =

(
sinα

sin θ

)d−3
dσ

4| cosα|
=

dσ

2d−1| cosα|d−2
. (3.16)

This completes the proof.

Lemma 3.2. Fix σ ∈ Sd−1 and q = v − v∗, the map u : Rd 7−→ Rd given by

u(q) =
q + |q|σ

2
(3.17)

has the Jacobian:
du

dq
=

1 + σ · q̂
2d

. (3.18)

Proof. Choose an orthonormal base {σ, ξj} with 2 ≤ j ≤ d. Then, the coordinates of this

change of variables are

u1 =u · σ =
1

2
(q · σ + |q|) = 1

2
(q1 + |q|) ,

uj =u · ξj =
1

2
qj , j = 2, ..., d.

(3.19)

Thus,
∂u1
∂q1

=
1

2
(1 + q̂ · σ) , ∂uj

∂ql
=

1

2
δjl, j = 2, ..., d. (3.20)

and, therefore,

du

dq
=

d∏
j=1

∣∣∣∣∂uj∂qj

∣∣∣∣ = 1 + q̂ · σ
2d

. (3.21)

3.2 The Boltzmann collision kernel.

The collision kernel B is a non-negative function that depends only on |v − v∗| and
cosine of the deviation angle θ, whose specific form can be determined from the inter-

molecular potential using classical scattering theory.

B(v − v∗, σ) = B(|v − v∗|, cos θ), cos θ =
σ · (v − v∗)

|v − v∗|
, (3.22)
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For a given impact parameter p ≥ 0 and relative velocity v− v∗, let the deviation angle θ

be

θ(p, v − v∗) = π − 2p

∫ +∞

r0

dr/r2√
1− p2

r2 − 4 U(r)
|v−v∗|2

u=p/r
====== π −

∫ p
r0

0

du√
1− u2 − 4

|v−v∗|2U( pu )
,

(3.23)

where r0 is the positive root of

1− p2

r20
− 4

U(r)

|v − v∗|2
= 0, (3.24)

then the collision kernel B is implicitly defined by

B(v − v∗, σ) = B(|v − v∗|, cos θ) =
p

sin θ

dp

dθ︸ ︷︷ ︸
scattering cross section

|v − v∗|. (3.25)

For example, in the case of Inverse Power Law Potentials U(r) = r−(ℓ−1) = r−
1
s

with 2 < ℓ < ∞ or 0 < s = 1
ℓ−1 < 1, where r is the distance between two interacting

particles, B can be separated as the kinetic part and angular part:

B(v − v∗, σ) = B(|v − v∗|, cos θ) = b(cos θ)Φ(|v − v∗|), 1 (3.26)

where, for d = 3, the kinetic part

Φ(|v − v∗|) = |v − v∗|γ =


γ > 0, Hard potential,

γ = 0, Maxwellian gas,

γ < 0, Soft potential.

γ = 1− 4s =
ℓ− 5

ℓ− 1
> −3, 2

and the angular part

sind−2 θb(cos θ)
∣∣
θ→0+

∼ Kθ−1−ν , 0 < ν =
2

ℓ− 1
= 2s < 2. (3.27)

The kernel (3.26) encompasses a wide range of potentials, among which we mention

three extreme cases [8]:

(i) γ = 1 corresponds to the hard spheres, where B is only proportional to |v − v∗|,

B(|v − v∗|, cos θ) = K|v − v∗|, K > 0; (3.28)

(ii) ℓ = 2, γ = −3, ν = 2 corresponds to the Coulomb interaction, where B is given by

the famous Rutherford formula,

B(|v − v∗|, cos θ) =
1

|v − v∗|3 sin4(θ/2)
; (3.29)

(iii) ℓ = 5, γ = 0, ν = 1
2 corresponds to the literally physical Maxwellian gas, where B

does not depend on relative velocity |v − v∗|,

B(|v − v∗|, cos θ) = b

(
v − v∗
|v − v∗|

· σ
)

= b(cos θ). (3.30)

1In this case, the cross section is approximate to ∼ p
sin θ

dp
dθ

|v − v∗| ∼
(
sin θ

2

)−2−2s
|v − v∗|1−4s.

2This is why we usually assume γ + 2s > −1, since γ + 4s = 1 and 0 < s < 1.
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However, instead of this very special case above, we are interested in the more general

case B = b(cos θ), not depending on |v − v∗| that,

γ = 0, 0 < ν < 2, (3.31)

which is called Maxwellian molecules type.

The range of deviation angle θ, namely the angle between pre- and post-collisional ve-

locities, is a full interval [0, π], but it is customary to restrict it to [0, π/2] mathematically,

replacing b(cos θ) by its “symmetrized” version [21]:

[b(cos θ) + b(cos (π − θ))]10≤θ≤π
2
, (3.32)

which amounts more or less to forbidding the exchange of particles.

Another physically interesting example that is not explicit at all has been called

Debye-Yukawa Potential U(r) = e−r/r, also asymptotically behaving as θ → 0:

sind−2 θB(|v − v∗|, cos θ)
∣∣∣
θ→0+

∼ K|v − v∗|θ−1| log θ−1|. (3.33)

3.3 Cutoff VS Non-cutoff

As it has been long known, the main difficulty in establishing the well-posedness result

for Boltzmann equation is that the singularity of the collision kernel b is not locally

integrable in σ ∈ S2. To avoid this, H. Grad gave the integrable assumption on the

collision kernel bc by a “Cutoff ” near singularity:∫
S2
bc

(
v − v∗
|v − v∗|

· σ
)
dσ = 2π

∫ π
2

0

bc(cos θ) sin θ dθ <∞. (3.34)

However, the full singularity condition for the collision kernel with Non-cutoff As-

sumption is implicitly defined for the angular collision part b(cos θ), which asymptotically

behaves as θ → 0+,

sin θb(cos θ)
∣∣
θ→0+

∼ Kθ−1−ν , 0 < ν =
2

ℓ− 1
= 2s < 2 and K > 0, (3.35)

or in “symmetrized” manner,

∃α0 ∈ (0, 2], such that

∫ π
2

0

sinα0

(
θ

2

)
b(cos θ) sin θdθ <∞, (3.36)

which can handle the strongly singular kernel b in Eq. (3.35) with some 0 < ν < 2 and

α0 ∈ (ν, 2]. Besides, we further illustrate that the non-cutoff assumption Eq. (3.36) can

be rewritten as

(1− τ)
α0
2 b(τ) ∈ L1[0, 1), for α0 ∈ (0, 2], (3.37)

by means of the transformation of variable s = cos θ in the symmetric version of b. As

mentioned in [15, Remark 1], the full non-cutoff assumption Eq. (3.36), or equivalently

Eq. (3.37), is the extension of the mild non-cutoff assumption of the collision kernel b used

in [14], namely,

(1− τ)
α0
4 (1 + τ)

α0
4 b(τ) ∈ L1 (−1, 1) , for α0 ∈ (0, 2]. (3.38)
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3.4 The Weak Formulation and Conservation Law

To derive the weak formulation, a universal tool (so-called Pre-postcollisional change of

variables) is frequently used, which is an involutive change of variables with unit Jacobian,

(v, v∗, σ) → (v′, v′∗, q̂), (3.39)

where q̂ is the unit vector along the relative velocity q := v − v∗,

q̂ =
v − v∗
|v − v∗|

. (3.40)

Lemma 3.3. For a fixed ω, the Jacabian matrix induced from (v, v∗) → (v′, v′∗) satisfies∣∣∣∣∂(v′, v′∗)∂(v, v∗)

∣∣∣∣ = −1 (3.41)

Proof. Considering the relation between the pre-and post-collision velocities:

v′ = v − aω, v′∗ = v + aω (3.42)

where

a = [(v − v∗) · ω] =
3∑

i=1

(vi − v∗i)ωi with avj =
∂a

∂vj
= ωj , av∗j =

∂a

∂v∗j
= −ωj (3.43)

then we can rewrite the Jacobian
∣∣∣∂(v′,v′

∗)
∂(v,v∗)

∣∣∣ in 3× 3 blocks:

∣∣∣∣∂(v′, v′∗)∂(v, v∗)

∣∣∣∣ =
(

∂v′
i

∂vj

∂v′
∗i

∂vj

∂v′
i

∂v∗j

∂v′
∗i

∂v∗j

)
=

(
δij − ωiavj ωiavj
−ωiav∗j δij + ωiav∗j

)
(3.44)

Now add the fourth column to the first column, add the fifth column to the second column,

and add the sixth column to the third column. Then, we have∣∣∣∣∂(v′, v′∗)∂(v, v∗)

∣∣∣∣ =
(
I ωiavj
I δij + ωiav∗j

)
(3.45)

Next subtract the first row from the fourth row, subtract the second row from the fifth

row, and subtract the third row from the sixth row. This leads to∣∣∣∣∂(v′, v′∗)∂(v, v∗)

∣∣∣∣ =
(
I ωiavj
0 δij + ωibj

)
(3.46)

where bj = av∗j − avj . Thus,
∣∣∣∂(v′,v′

∗)
∂(v,v∗)

∣∣∣ = det(δij + ωibj) which is now a 3 × 3 matrix

computation.
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Since bj = av∗j − avj = −2ωj ,∣∣∣∣∂(v′, v′∗)∂(v, v∗)

∣∣∣∣ =det(δij + ωibj)

=

∣∣∣∣∣∣∣
1− 2ω2

1 −2ω1ω2 −2ω1ω3

−2ω2ω1 1− 2ω2
2 −2ω2ω3

−2ω3ω1 −2ω2ω3 1− 2ω2
3

∣∣∣∣∣∣∣
=
(
1− 2ω2

1

) [
(1− 2ω2

2)(1− 2ω2
3)− 4ω2

2ω
2
3

]
+ 2ω1ω2

[
−2ω1ω2(1− 2ω2

3)− 4ω2
2ω

2
3

]
− 2ω1ω3

[
4ω1ω

2
2ω3 + 2ω1ω3(1− 2ω2

2)
]

=− 1

(3.47)

which implies the absolute value of the Jacobian
∣∣∣∂(v′,v′

∗)
∂(v,v∗)

∣∣∣ is unity.
Remark 3.4. For the inelastic collision, where the restitution coefficient e is chosen as a

suitable function of the impact velocity, i.e., e = e(|[(v − v∗) · ω]|) as well as the following

assumptions:

� The mapping r ∈ R+ 7−→ e(r) ∈ (0, 1] is absolutely continuous.

� The mapping r ∈ R+ 7−→ ϑ(r) := re(r) is strictly increasing.

Then, the Jacobian of the following transformation

v′ = v − 1 + e

2
([(v − v∗) · ω])ω, v′∗ = v∗ +

1 + e

2
([(v − v∗) · ω])ω (3.48)

can be computed as, since [(v − v∗) · ω] = q · ω∣∣∣∣∂(v′, v′∗)∂(v, v∗)

∣∣∣∣ = e(|q · ω|) + |q · ω|de(|q · ω)|
dr

=
dϑ(|q · ω|)

dr
> 0. (3.49)

On the other hand, since σ = (v′−v′∗)/|v′−v′∗|, the change of variables (3.39) formally

amounts to the change of (v, v∗) and (v′, v′∗). Hence, under suitable integrability conditions

on the measurable function F ,∫
S2

∫
R3

∫
R3

B(|v − v∗|, q̂ · σ)F (v, v∗, v′, v′∗) dv dv∗ dσ

=

∫
S2

∫
R3

∫
R3

B(|v − v∗|, q̂ · σ)F (v, v∗, v′, v′∗) dv′ dv′∗ dσ

=

∫
S2

∫
R3

∫
R3

B(|v − v∗|, q̂ · σ)F (v′, v′∗, v, v∗) dv dv∗ dσ,

(3.50)

where the fact |v′ − v′∗| = |v − v∗|, σ · q̂ = q̂ · σ is used to keep the arguments of collision

kernel B(v − v∗, σ) = B(|v − v∗|, q̂ · σ) unchanged. Note that the change of variables

(v, v∗) → (v′, v′∗) works for a fixed ω but is illegal for any given σ.

With the help of this micro-reversiblity of velocity from (v, v) to (v′, v′∗), which leaves

the collision kernel B invariant, we can obtain the following weak form for the Boltzmann

collision operator.
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Proposition 3.5. For any test function ϕ that is an arbitrarily continuous function of

the velocity v,∫
R3

Q(f, f)ϕ dv =

∫
R3

∫
R3

∫
S2
B(v − v∗, ω)(f

′f ′∗ − ff∗)ϕ dω dv∗ dv

=

∫
R3

∫
R3

∫
S2
B(v − v∗, ω)ff∗(ϕ

′ − ϕ) dω dv∗ dv

=
1

2

∫
R3

∫
R3

∫
S2
B(v − v∗, ω)ff∗(ϕ

′ + ϕ′∗ − ϕ− ϕ∗) dω dv∗ dv

=
1

4

∫
R3

∫
R3

∫
S2
B(v − v∗, ω)(f

′f ′∗ − ff∗)(ϕ+ ϕ∗ − ϕ′ − ϕ′∗) dω dv∗ dv.

(3.51)

Proof. Step 1: Swap v and v∗, as B(v − v∗, ω) = B(|v − v∗|, ω) is invariant, and notice

that

v′ =v − [ω · (v − v∗)]ω → v∗ − [ω · (v∗ − v)]ω = v′∗

v′∗ =v + [ω · (v − v∗)]ω → v + [ω · (v∗ − v)]ω = v′
(3.52)

we have∫
R3

Q(f, f)ϕ dv =

∫
R3

∫
R3

∫
S2
B(v − v∗, ω)(f

′f ′∗ − ff∗)ϕ dω dv∗ dv

v↔v∗⇐==⇒
∫
R3

∫
R3

∫
S2
B(v − v∗, ω)(f

′f ′∗ − ff∗)ϕ∗ dω dv∗ dv

add and divided⇐=========⇒
∫
R3

∫
R3

∫
S2
B(|v − v∗|, ω)(f ′f ′∗ − ff∗)

ϕ+ ϕ∗
2

dω dv∗ dv

(3.53)

Step 2: Apply the pre-post velocity transformation (v, v∗) 7−→ (v′, v′∗) for a fixed ω

with the unit Jacobian dvdv∗ = dv′dv′∗, and B(|v − v∗|, ω) is still invariant, since by the

conservation of momentum and energy as in Eq. (3.4)

|v − v∗|2 = 2|v|2 + 2|v∗|2 − |v + v∗|2 = |v′ − v′∗|2. (3.54)

we continue with Eq. (3.53) above that

(v,v∗) 7−→(v′,v′
∗)⇐=========⇒
∫
R3

∫
R3

∫
S2
B(|v − v∗|, ω)

∣∣∣∣ ∂(v, v∗)∂(v′, v′∗)

∣∣∣∣[
f ′f ′∗ − f

(
v(v′, v′∗)

)
f
(
v∗(v

′, v′∗)
)] ϕ(v(v′, v′∗))+ ϕ

(
v∗(v

′, v′∗)
)

2
dω dv′∗ dv

′

(3.55)

where, by the definition Eq. (3.5)

v′ − v′∗ = v − v∗ − 2[(v − v∗) · ω]ω

=⇒ (v′ − v′∗) · ω = (v − v∗) · ω − 2[(v − v∗) · ω] = −(v − v∗) · ω
(3.56)

we can invert these to find v(v′, v′∗) and v∗(v
′, v′∗):

v = v′ + [(v − v∗) · ω]ω ⇔ v′ − [(v′ − v′∗) · ω]ω ≡ v(v′, v′∗)

v∗ = v′ − [(v − v∗) · ω]ω ⇔ v′∗ + [(v′ − v′∗) · ω]ω ≡ v∗(v
′, v′∗)

(3.57)
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Then, rename (v′, v′∗) by (v, v∗),

⇐⇒
∫
R3

∫
R3

∫
S2
B(|v′ − v′∗|, ω)

(
ff∗ − f

(
v − [(v − v∗) · ω]ω︸ ︷︷ ︸

:=v′

)
f
(
v∗ + [(v − v∗) · ω]ω︸ ︷︷ ︸

:=v′
∗

))
ϕ
(
v − [(v − v∗) · ω]ω

)
+ ϕ

(
v∗ + [(v − v∗) · ω]ω

)
2

dω dv∗ dv

⇐⇒
∫
R3

∫
R3

∫
S2
B(|v − v∗|, ω)(ff∗ − f ′f ′∗)

ϕ′ + ϕ′∗
2

dω dv∗ dv

(3.58)

Step 3: By adding the last equality in Eq. (3.53) and that in Eq. (3.58), and divided

to obtain

add and divided⇐=========⇒
∫
R3

∫
R3

∫
S2
B(v − v∗, ω)(f

′f ′∗ − ff∗)
ϕ+ ϕ∗ − ϕ′ − ϕ′∗

4
dω dv∗ dv (3.59)

Step 4: The second equality in Eq. (3.51) is obtained by changing (v, v∗) 7−→ (v′, v′∗)

only to the gain term.

Remark 3.6. There is another proof based on the bilinear form of the collision operator

Q∗(f, g) as following:

Q∗(g, f) =
1

2

∫
R3

∫
R3

∫
S2
B(v − v∗, ω)(g

′f ′∗ + f ′g′∗ − gf∗ − fg∗) dω dv∗ dv (3.60)

Then Q∗ is symmetric and Q∗(f, f) = Q(f, f).

Similarly, for suitable test function ϕ,∫
R3

Q∗(g, f)ϕdv

Def⇐==⇒1

2

∫
R3

∫
R3

∫
S2
B(|v − v∗|, ω)(g′f ′∗ + f ′g′∗ − gf∗ − fg∗)ϕ dω dv∗ dv

Step1:v↔v∗⇐======⇒1

2

∫
R3

∫
R3

∫
S2
B(|v − v∗|, ω)(g′f ′∗ + f ′g′∗ − gf∗ − fg∗)ϕ∗ dω dv∗ dv

Step2:(v,v∗)7−→(v′,v′
∗)⇐=============⇒1

2

∫
R3

∫
R3

∫
S2
B(|v′ − v′∗|, ω)(gf∗ + fg∗ − g′f ′∗ − f ′g′∗)ϕ

′ dω dv′∗ dv
′

Step1:v↔v∗⇐======⇒1

2

∫
R3

∫
R3

∫
S2
B(|v − v∗|, ω)(gf∗ + fg∗ − g′f ′∗ − f ′g′∗)ϕ

′
∗ dω dv′∗ dv

′

(3.61)

By taking g = f , adding the four choices and divided, we finally get the same quadratic

form:∫
R3

Q(f, f)ϕdv =
1

4

∫
R3

∫
R3

∫
S2
B(v−v∗, ω)(f ′f ′∗−ff∗)(ϕ+ϕ∗−ϕ′−ϕ′∗) dω dv∗ dv. (3.62)

3.5 Boltzmann’s H–Theorem and Equilibrium State

Recall the weak formulation (3.51) of the Boltzmann equation as in (3.5), there is

an immediate consequence for a solution f to the Boltzmann equation that, whenever ϕ
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satisfies the functional equation,

∀(v, v∗, σ) ∈ R3 × R3 × S2, ϕ(v′) + ϕ(v′∗) = ϕ(v) + ϕ(v∗), (3.63)

then, we at least formally have,

d

dt

∫
R3

f(t, v)ϕ(v) dv =

∫
R3

Q(f, f)ϕ dv = 0, (3.64)

and this kind of ϕ is usually called the collision invariant.

Since the mass, momentum and energy are conserved during the classical elastic col-

lisions, it is natural to find that the functions 1, vj , 1 ≤ j ≤ 3, and |v|2 and any linear

combination of them are the collision invariants, which can be actually shown as the only

collision invariants. Together with the weak form, this leads to the formal conservation

law of the Boltzmann equation,

d

dt

∫
R3

f(t, v)

 1

vj

|v|2

 dv =

∫
R3

Q(f, f)(t, v)

 1

vj

|v|2

 dv = 0, 1 ≤ j ≤ 3. (3.65)

In particular, at a given time t, one can define the local density ρ, the local macroscopic

velocity u, and the local temperature T , by

ρ =

∫
R3

f(t, v) dv, ρu =

∫
R3

f(t, v)v dv, ρ|u|2 + dρT =

∫
R3

f(t, v)|v|2 dv, (3.66)

then the equilibrium is the Maxwellian Equilibrium Distribution,

M(v) = Mf (v) =
1

(2πT )d/2
e−

|v−u|2
2T . (3.67)

If not caring about the integrability issues, we select the test function ϕ = log f into

the weak form (3.51), and consider the properties of the logarithm function, to find that

−
∫
R3

Q(f, f) ln f dv =D(f)

=
1

4

∫
R3

∫
R3

∫
S2
B(v − v∗, σ)(f

′f ′∗ − ff∗) ln
f ′f ′∗
ff∗

≥ 0

(3.68)

due to the fact that the function (X,Y ) 7−→ (X −Y )(lnX − lnY ) is always non-negative.

Thus, if we introduce Boltzmann’s H–functional,

H(f) =

∫
R3

f ln f dv, (3.69)

then the H(f) will evolve in time because of the collisional effect that

d

dt
H(f(t, ·)) = −D(f(t, ·)) ≤ 0, (3.70)

which is the well-known Boltzmann’s H–Theorem: the H–functional, or entropy, is non-

increasing with time evolution.

And the equality holds if and only if ln f is a collision invariant, i.e., f = exp(a + b ·
v + c|v|2) with a, b, c being all constants. In the following Lemma, we will show that the

collision invariant satisfying (3.63) must be of form given as ln f = a+ b · v + c|v|2 if ϕ is

assumed to be continuous.
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Lemma 3.7. Let ϕ be continuous and satisfy

ϕ(v′) + ϕ(v′∗) = ϕ(v) + ϕ(v∗), ∀(v, v∗, σ) ∈ R3 × R3 × S2. (3.71)

Then there exists constants a, c ∈ R and a constant vector b ∈ R3 such that

ϕ(v) = a+ b · v + c|v|2. (3.72)

Proof. By hypothesis,

ϕ(v) + ϕ(v∗) = F (|v|2 + |v∗|2, v + v∗) (3.73)

for some function F . Define

ϕ±(v) =ϕ(v)± ϕ(−v);

F±(|v|2 + |v∗|2, v + v∗) =F (|v|2 + |v∗|2, v + v∗)± F (|v|2 + |v∗|2,−v − v∗).
(3.74)

From above, ϕ(−v) + ϕ(−v∗) = F (|v|2 + |v∗|2,−v − v∗). Hence,

ϕ±(v) + ϕ±(v∗) = F±(|v|2 + |v∗|2, v + v∗). (3.75)

Clearly, we have ϕ±(−v) = ±ϕ±(v) and so forth.

Put v∗ = −v in (3.75):

± ϕ±(v) + ϕ±(v) = F±(2|v|2, 0). (3.76)

Thus,

2ϕ+(v) = F+(2|v|2, 0) (3.77)

so g+(v) depends only on |v|2. Write ϕ+(v) = ζ(|v|2). From the equation (3.75), then F+

depends only on |v|2 + |v∗|2 (see the observation below), and hence,

ζ(|v|2) + ζ(|v∗|2) = F+(|v|2 + |v∗|2). (3.78)

Set v∗ = 0, we have ζ(|v|2) + ζ(0) = F+(|v|2). Hence,

ζ(|v|2 + |v∗|2) + ζ(0) = F+(|v|2 + |v∗|2) = ζ(|v|2) + ζ(|v∗|2). (3.79)

Set g(|v|2) = ζ(|v|2)−ζ(0). By the following Lemma 3.8, g(|v|2) = c|v|2 for some constant

c. Thus,

ϕ+(v) = ζ(|v|2) = g(|v|2) + ζ(0) = c|v|2 + ζ(0). (3.80)

as desired.

For the function ϕ−, we have,

ϕ−(v) + ϕ+(v∗) = F−(|v|2 + |v∗|2, v + v∗). (3.81)

First we take v∗ perpendicular v; then |v+v∗|2 = |v|2+ |v∗|2 so F− depends on the second

argument only. We can write

ϕ−(v) + ϕ−(v∗) = h(v + v∗). (3.82)
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Set v∗ = 0:

ϕ−(v) + ϕ−(0) = h(v), (3.83)

or

g−(v) = h(v) (3.84)

so that

ϕ−(v) + ϕ−(v∗) = h(v + v∗) = ϕ−(v + v∗). (3.85)

Therefore, we are done if v∗ is perpendicular to v.

To avoid this extra hypothesis: let v, v∗ be arbitrary, choose a vector z such that

z · v = z · v∗ = 0, |z|2 = |v · v∗| (e.g., z = ±cv × v∗) (3.86)

By the above considerations,

ϕ−(v + z) =ϕ−(v) + ϕ−(z)

ϕ−(v ∓ z) =ϕ−(v)∓ ϕ−(z)
(3.87)

The sign in the second expression is chosen as follows: we take the minus sign if v ·v∗ > 0,

the plus sign if v∗ · v < 0.

Now

(v + z) · (v∗ ∓ z) =v · v∗ ∓ v · z + z · v∗ ∓ |z|2

=v · v∗ ∓ |z|2 = 0
(3.88)

by this choice if sign. Therefore,

ϕ−(v + z) + ϕ−(v∗ ∓ z) = ϕ−(v + v∗ + z ∓ z) = ϕ−(v + z) + ϕ−(z ∓ z) (3.89)

due to the fact that (v + v∗) ⊥ (z ∓ z).

By using the relationship (3.87) on the left hand side, we get,

ϕ−(v) + ϕ−(z) + ϕ−(v∗)∓ ϕ−(z) = ϕ−(v + v∗) + ϕ−(z ∓ z). (3.90)

If v · v∗ > 0, we take the minus sign: ϕ−(v)+ϕ−(v∗) = ϕ−(v+ v∗). Put v∗ = v, we obtain

2ϕ−(v) = ϕ−(2v). Hence,

2ϕ−(z) = ϕ−(2z). (3.91)

Put this in (3.90), using the bottom sign:

ϕ−(v) + 2ϕ−(z) + ϕ−(v∗) = ϕ−(v + v∗) + ϕ−(2z). (3.92)

Therefore,

ϕ−(v) + ϕ−(v∗) = ϕ−(v + v∗) (3.93)

so that

ϕ− = b · v for some constant vectorb. (3.94)

14



Above we used the following observation: in order to deduce (3.78) from (3.75), we

show that no non-constant function of v+ v∗ can be constructed from the arguments |v|2

and |v∗|2. For, suppose that

g(v + v∗) = ϕ(|v|2, |v∗|2). (3.95)

Put v∗ = 0:

g(v) = ϕ(|v|2, 0) = h(|v|2) (3.96)

hence,

h(|v + v∗|2) = h(|v|2 + |v∗|2 + 2v · v∗). (3.97)

Thus, g(v + v∗) = h(|v + v∗|2) implies that

h(|v|2 + |v∗|2 + 2v · v∗) = ϕ(|v|2, |v∗|2). (3.98)

When v · v∗ = 0 and |v∗|2 = t|v|2, we have,

Left-hand side =h(|v|2 + |v∗|2 + 2v · v∗) = h((1 + t)|v|2);

Right-hand side =ϕ(|v|2, |v∗|2) = ϕ(|v|2, t|v|2)
(3.99)

However, when v∗ = t
1
2 v,

Left-hand side =h(|v|2 + |v∗|2 + 2v · v∗) = h((t
1
2 + 1)2|v|2);

Right-hand side =ϕ(|v|2, |v∗|2) = ϕ(|v|2, t|v|2)
(3.100)

So for these two different choices of arguments, the right hand sides are equal. But the

left hand sides are not. Hence, h must be constant.

To complete the proof above, we have to show the following Lemma 3.8 used in the

proof above:

Lemma 3.8. Let x ∈ Rd. Let f be continuous at one point x0 and satisfy

g(x) + g(y) = g(x+ y), ∀x, y ∈ Rd. (3.101)

Then g(x) = b · x for some constants b ∈ Rd.

Proof. We claim that g is homogeneous of degree one:

g(αx) = αg(x), ∀x ∈ Rd, α ∈ R. (3.102)

Indeed, assume this temporarily and consider any orthogonal basis {ek}nk=1 for all Rd.

Let x ∈ Rd. Then,

g(x) =g

(
d∑

k=1

(x · ek)ek

)
=

d∑
k=1

g((x · ek)ek)

=

d∑
k=1

(x · ek)g(ek) = x ·
d∑

k=1

g(ek)ek = x · b

(3.103)
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as desired.

It remains to establish (3.102). g is actually everywhere continuous by

g(0) = 0, g(x+ h)− g(x) = g(h) = g(x0 + h)− g(x0). (3.104)

Next, for n ∈ N,

g

(
n∑

i=1

xi

)
=

n∑
i=1

g(xi). (3.105)

We take xi = x for all i to obtain g(nx) = ng(x). Now, we put n→ m ∈ N and x→ 1
mx,

and then obtain g(x) = mg
(

x
m

)
, i.e.,

g
( x
m

)
=

1

m
g(x) (3.106)

and hence,

g
( n
m
x
)
= ng

( x
m

)
=

n

m
g(x) (3.107)

i.e.,

g(αx) = αg(x), ∀x ∈ Rd, 0 < α ∈ Q. (3.108)

and thus, for all x ∈ Rd, 0 < α ∈ R. By hypothesis, g(0) = 0 and g(−x) = −f(x). Hence,

g(x) + g(y) = g(x+ y), ∀x, y ∈ Rd. (3.109)

Remark 3.9. Note that, on the one hand, if we restrict ϕ ∈ C2, there is a relatively

easier proof for the Lemma 3.7 above; on the other hand, the Lemma 3.7 holds, even if

the function ϕ is only assumed to be measurable rather than continuous: however, when

passing from continuous to (possibly) discontinuous functions, one should insist on the fact

that the equation (3.63) is satisfied almost everywhere and not everywhere in R3×R3×S2.

3.6 Boundary Conditions

When the Boltzmann equation is posed over a spatial domain with a boundary, it must

be supplemented with boundary conditions, and the boundary effect can dominate the

solution when mean-free-paths are comparable to length scales in the spatial domain.

There are many kinds of boundaries:

� Physical boundaries: Wall of a container, Piston that confines gas...

� Open boundaries: Mouth of a valve, Nozzle though which gas is either injected into

or expelled from the domain...

� Moving boundaries: Move in a prescribed way independent of the gas, or in a un-

prescribed way that is influenced by the gas, e.g., a piston can have a prescribed

position as a function of time, or it can exert a prescribed containing force on the

gas and move accordingly...
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� Free boundaries: Being free to take on a wide variety of shapes in response to the

gas, e.g., a confining membrane or liquid surface...

� Artificial boundaries: Make a problem computationally manageable, e.g., computing

the aerodynamics of a reentering spacecraft...

However, introducing the appropriate boundary conditions is a nontrivial task. Be-

yond complicating the well-posedness problem, the most mathematically natural boundary

conditions are not necessarily the best suited to describing physical scenarios. Mathemati-

cally, boundary conditions such as Specular-reflection (particles bounce off the walls at

an angle equal to the pre-collision angle) and Bounce-back (particles bounce off the walls

with reversed momenta) are convenient, but they are not always good physical models. A

good boundary condition takes into account the fine details of the gas-surface interaction.

A commonly studied example of such a boundary condition is Maxwellian diffusion, in

which particles are absorbed and re-emitted by the boundary according to a probability

distribution which maintains thermodynamic equilibrium between the particles and the

boundary...

We will first present the basic set-up of the most physical boundaries – (Perfectly)

Reflecting Boundaries, at which every molecule striking it is reflected back in some altered

state. Molecules are neither created nor destroyed at such a boundary. Each molecule

that strikes such a boundary will certainly have its momentum changed, and possibly its

energy too. The walls of a container that physically confine a gas are often modeled as

(Perfectly) Reflecting Boundaries.

Let ∂Ω|R denote the part of ∂Ω which is a (Perfectly) Reflecting Boundaries. We will

begin with considering the case where ∂Ω|R is stationary, and at each point x ∈ ∂Ω|R,
there is a unique tangent plane with outward unit normal n(x) ∈ Sd−1.

Molecules with velocities v such that{
n(x) · v > 0 : moving towards the boundary

n(x) · v < 0 : moving away from the boundary into the domain
(3.110)

For every t > 0, we must specify boundary values for F (t, x, v) on the set of incoming

velocities along ∂Ω|R denoted by

Γ−
R :=

{
(x, v) ∈ ∂Ω|R × Rd : n(x) · v < 0

}
(3.111)

in terms of the boundary values for for F (t, x, v) on the set of outgoing velocities along

∂Ω|R denoted by

Γ+
R :=

{
(x, v) ∈ ∂Ω|R × Rd : n(x) · v > 0

}
(3.112)

Remark 3.10. In the ideal gas regimes, most of the gas molecules that intersect with the

reflecting boundary will not be influenced by other gas molecules. The relationship giving

f(t, x, v) on Γ−
R in terms of f(t′, x′, v′) on [0, t]× Γ+

R will therefore be taken to be linear.

We will also assume that the spatial and temporal scales over which most molecules

interact with the boundary are comparable with the spatial and temporal scales of an inter-

molecular interaction, which are neglected in our kinetic model. The linear relationship
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giving giving f(t, x, v) on Γ−
R in terms of f(t′, x′, v′) on [0, t]× Γ+

R will therefore be taken

to be local in space and time.

In other words, f(t, x, v) on Γ−
R will be related linearly to f(t, x, v′) on Γ+

R.

Finally, we will assume e the boundary material is in local thermal equilibrium char-

acterized by a so-called wall temperature TW := TW (t, x). This temperature can either

be prescribed or be influenced by the gas. The assumption that a boundary is in local

thermal equilibrium is usually good because the molecules of the boundary material are

usually far denser than those of the gas.

Indeed, the molecules of a solid boundary material are in constant contact and behave

collectively. Therefore they typically interact with each other many times between their

interactions with gas molecules. Plus, the molecules of the boundary material also gener-

ally are heavier than those of the gas. Therefore their momentum and energy are changed

less by interactions with gas molecules than by interactions with each other.

� The rate at which molecules of mass m with velocity v′ strike a differential area

dA(x) of the boundary surface with outward normal unit vector n(x) is given by:

1

m
[n(x) · v′] f(t, x, v′) dv′ dA(x) (3.113)

� The rate at which molecules of mass m with velocity v moving away from the

differential area dA(x) of the boundary surface with outward normal unit vector

n(x) is given by:
1

m
|n(x) · v|f(t, x, v) dv dA(x) (3.114)

If we let R(v, v′) be the probability density that a molecule which strikes the boundary

surface with velocity v′ will move away from it with velocity v, then we can express the

general reflection boundary condition as

|n(x) · v|f(t, x, v) =
∫
n(x)·v′>0

[n(x) · v′]R(v, v′)f(t, x, v′) dv′, for every (x, v) ∈ Γ−
R,

(3.115)

where the so-called re-distribution kernel R(v, v′) satisfies

� Con. (1): R(v, v′) ≥ 0 for every n(x) · v < 0 and n(x) · v′ > 0;

� Con. (2):
∫
n(x)·v<0

R(v, v′) dv = 1 for every n(x) · v′ > 0;

� Con. (3): |n(x) · v|M(v;TW ) =
∫
n(x)·v′>0

[n(x) · v′]R(v, v′)M(v′;TW ) dv′ for every

n(x) · v′ < 0.

where TW (t, x) is the wall temperature and the so-called wall Maxwellian distribution

M(v;TW ) is given by

M(v;TW ) = M(v; 1, 0, TW ). (3.116)

Note that, here we have suppressed the fact that R(v, v′) can depend on (t, x), typically

through the normal n(x) and/or the wall temperature TW (t, x).
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Remark 3.11. (i) Con. (1) and Con. (2) state that, for each v′, the kernel R(v, v′) is a

probability density in v over n(x) · v < 0, which is another way of saying the boundary is

perfectly reflecting.

(ii) Con. (3) states that the boundary condition (3.115) is satisfied when f is a local

Maxwellian in the form that f(t, x, v) = ρ(t, x)M(v;TW (t, x)) for some mass density ρ.

(iii) Con. (3) is sometimes replaced by the so-called detail-balance condition: for every

n(x) · v < 0 and n(x) · v′ > 0,

[n(x) · v′]R(v, v′)M(v′;TW ) = R(v′, v) |n(x) · v|M(v;TW ). (3.117)

This statement of symmetry holds for many re-distribution kernel models, which is also

easily checked that this condition plus Con. (2) implies Con. (3).

3.6.1 Specular Reflection Model RS

If the boundary is modeled as a smooth hard surface, then a molecule striking it with

velocity v′ will be elastically reflected with a velocity v given by

v = v′ − 2 [n(x) · v′]n(x) =
(
I − 2n(x)nT (x)

)
v′. (3.118)

This is called specular reflection. Each such reflection conserves the energy of molecule

|v|2 = |v′|2, and also conserves the tangential momentum of molecule, as v − v′ is always

in the normal direction.

Now consider f(t, x, v) at a point (x, v) ∈ Γ−
R. By the Eq. (3.118), a molecule with

reflected velocity v can only have been produced by striking the surface with velocity v′

given by

v′ = v − 2 [n(x) · v′]n(x) =
(
I − 2n(x)nT (x)

)
v, for every (x, v) ∈ Γ−

R. (3.119)

The so-called specular reflection boundary condition therefore reads:

f(t, x, v) = f(t, x, v − 2 [n(x) · v′]n(x)) for every (x, v) ∈ Γ−
R. (3.120)

In this case, the corresponding re-distribution kernel RS is given by

RS(v, v
′) = δ(v′ − v + 2 [n(x) · v]n(x)). (3.121)

This kernel satisfies the Con. (1)-(3) and the detailed-balance symmetry (3.117). Of

course, on molecular length scales, no surface is smooth. Consequently, few reflections

will be truly specular. Therefore, this boundary condition represents an ideal scenario.

3.6.2 Isotropic Reflection Model (Bounce-back) RI

If the boundary is modeled as a rough hard surface, then a molecule striking it with

velocity v′ will be elastically reflected to have velocity v = |v′|o, where o is an arbitrary

unit vector such that n(x)·o < 0. Each such reflection conserves the energy of the molecule

|v|2 = |v′|2.
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The vector o should be drawn from a probability distribution that depends on n(x)

and the direction o′ = v′/|v′|. When the microscopic dynamic is rotationally invariant,

the underlying probability density will be a function of the cosines, namely o · o′, o · n(x)
and o′ ·n(x). Rather than deriving such probability density from a model for the molecule

structure of the surface, we will simply draw o from the uniform distribution. This is

called isotropic reflection.

Now consider f(t, x, v) at a point (x, v) ∈ Γ−
R. A molecule reflected with velocity v

can only have been produced by striking the surface with velocity v′ = |v|o′, where o′ is
a unit vector such that n(x) · o′ > 0. By (3.113), molecules strike the surface at a rate

proportional to n(x) · o′.
Therefore, the so-called isotropic reflection boundary condition reads:

f(t, x, v) =
1

c

∫
n(x)·o′>0

[n(x) · o′] f(t, x, |v|o′) do′ (3.122)

for every (x, v) ∈ Γ−
R, where the constant c is given by

c =

∫
n(x)·o′>0

n(x) · o′ do′. (3.123)

The corresponding re-distribution kernel RI is given by

RI(v, v
′) =

|n(x) · v|
c|v|d

δ(|v′| − |v|). (3.124)

This kernel satisfies the Con. (1)-(3) and the detailed-balance symmetry (3.117).

Remark 3.12. (i) The microscopic roughness being modeled here is not in contradiction

with our assumption that ∂Ω varies on the scales of a mean-free-path or longer.

(ii) In particular, if coincidentally o = −n(x) and o′ = v′/|v′| = n(x), the isotropic

reflection actually becomes the bounce-back scenario that

f(t, x,−v) = f(t, x, v) (3.125)

for every (x, v) ∈ Γ−
R. This condition simply means that particles arriving with a certain

velocity on the wall will bounce back with an opposite velocity, which sometimes could lead

to more relevant conclusions than specular reflection, because ot allows for some transfer

of tangential momentum during collisions.

3.6.3 Diffuse (Thermal) Reflection Model RD

If the boundary is modeled as a rough surface at a co-called wall temperature TW =

TW (t, x) such that a molecule striking it with velocity v′ will be thermalized and re-emitted

with a velocity v drawn from the Maxwellian distribution M(v;TW ).

The so-called diffuse (thermal) reflection boundary condition therefore reads:

f(t, x, v) =M(v;TW )

∫
n(x)·v′>0

[n · v′]f(t, x, v′) dv′ (3.126)
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for every (x, v) ∈ Γ−
R. The corresponding re-distribution kernel RD is given by

RD(v, v′) = |n(x) · v|M(v;TW ) (3.127)

This kernel satisfies the Con. (1)-(3) and the detailed-balance symmetry (3.117).

3.6.4 Simple Mixed Model

We can build more realistic models of perfectly reflecting boundaries by simply taking

convex combinations of the idealized kernels given above:

R(v, v′) = αSRS(v, v
′) + αIRI(v, v

′) + αDRD(v, v′), (3.128)

where the so-called accommodation coefficients αS , αI , αD ≥ 0 with αS + αI + αD = 1.

They are the probabilities that a molecule striking the surface will undergo specular,

isotropic, or diffuse reflection. This kernel satisfies the Con. (1)-(3) and the detailed-

balance symmetry (3.117).

Remark 3.13. (i) In 1879, Maxwell proposed such a model with ℵI = 0, in which case

αD is the so-called the Maxwell accommodation coefficient. This Maxwell model was the

only one used to model reflecting boundaries until the late 1960s. Its major shortcoming

is that it has only the one free parameter αD, which is not enough to capture all important

boundary phenomena.

(ii) Better models of reflecting boundaries were developed so that simulations could

better match experimental observations. The Cercignani-Lampis model is among the best

examples of such developments. It has two free parameters, which is the number needed

to capture most important boundary phenomena.

3.6.5 Non-Reflection Boundary Condition (Stationary, Absorbing-Emitting

Boundary Condition)

Perfectly emitting-absorbing boundaries are ones at which every molecule striking it

is absorbed, while molecules are emitted from it in a prescribed way that only depends

on properties like the velocity, orientation, and temperature of the boundary.

Let ∂Ω|A denote that the part of ∂Ω which is a perfectly absorbing-emitting boundary.

We will start with considering the case where ∂Ω|A is stationary, and assume that at each

point x ∈ ∂Ω|A there is a unique tangent plane with outward unit normal n(x) ∈ Sd−1.

For every t > 0, we must specify boundary value of f(t, x, v) on the set

Γ−
A =

{
(x, v) ∈ ∂Ω|A × Rd : n(x) · v < 0

}
. (3.129)

The boundary condition will have the form

f(t, x, v) = gboundary(t, x, v), for every (x, v) ∈ Γ−
A, (3.130)

where gboundary(t, x, v) is a specified density of emitted molecules. For example:
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� At a perfectly absorbing boundary, we set

gboundary(t, x, v) = 0, (3.131)

for every (v, x) ∈ Γ−
A.

� At the boundary of a reservoir of gas molecules in the local thermal equilibrium

characterized by a mass density ρboundary(t, x) and a temperature T boundary(t, x),

we set

gboundary(t, x, v) = M(v; ρboundary(t, x), 0, T boundary(t, x)), (3.132)

for every (v, x) ∈ Γ−
A.

3.6.6 Non-Reflection Boundary Condition (Moving Boundary Condition)

There are two kinds of moving boundaries:

� (i) Ones whose motion is prescribed: An example of a prescribed moving bound-

ary is a piston with a predetermined position in a cylinder or the surface of an airfoil

being controlled by a pilot.

� (ii) Ones whose motion depends on the state of the gas – so called free boundaries:

An example of a free boundary is a piston applying a position-dependent force in a

cylinder or a liquid-gas interface. A moving piston often is modeled as a rigid body;

an airfoil often is modeled as flexible structure; while a liquid-gas interface typically

is deformable.

We will consider the Boltzmann equation over a prescribed spatial domain Ω(t). Let

∂Ω|R(t) denote that part of ∂Ω(t) which is a perfectly reflecting boundary. We will assume

that at each point x ∈ ∂Ω|R(t), there is a unique tangent plane with outward unit vector

n(t, x) and a velocity uW (t, x) at which the boundary is moving.

Molecules with velocities v such that n(t, x) · (v − uW (t, x)) > 0 are moving towards

the boundary into domain. For every t > 0, we must specify boundary values for f(t, x, v)

on the set of incoming velocities along ∂Ω|R(t) in term in terms of the boundary values

for f(t, x, v) on the set of outgoing velocities along ∂Ω|R(t), in other words, for each t > 0,

we must specify f(t, x, v) on the set

Γ−
R(t) :=

{
(x, v) ∈ ∂Ω|R(t)× Rd : n(t, x) · (v − uW (t, x)) < 0

}
, (3.133)

in terms of f(t′, x′, v′) for t′ ∈ [0, t] on the set

Γ−
R(t) :=

{
(x, v) ∈ ∂Ω|R(t)× Rd : n(t, x) · (v − uW (t, x)) > 0

}
. (3.134)

The rate at which molecules of mass m with velocity v′ are impinging a differential

area dA(x) with outward normal n(t, x) moving with velocity uW (t, x) is given by

1

m
n(t, x) · (v′ − uW (t, x))f(t′, x′, v′) dv′ dA(x). (3.135)
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The rate at which molecules of mass m with velocity v′ are moving away a differential

area dA(x) with outward normal n(t, x) moving with velocity uW (t, x) is given by

1

m
|n(t, x) · (v − uW (t, x))|f(t, x, v) dv dA(x). (3.136)

Now we assume that the motion of the boundary is sufficiently slow that its motion

can be considered uniform during on a time scale over which most molecules interact with

the it. We can then model: for every (x, v) ∈ Γ−
R(t),

|n(t, x) · (v − uW (t, x))|f(t, x, v)

=

∫
n(t,x)·(v−uW (t,x))>0

R(v − uW (t, x), v′ − uW (t, x)) [n(t, x) · (v − uW (t, x))] f(t, x, v′) dv′

(3.137)

where the re-distribution kernel R is as before.

3.7 Formal Derivation of Macroscopic Equation (Hydrodynamic

Limit)

Following the Boltzmann weak formulation and the invariant property of the collision

operator, in this subsection, we attempt to derive the macroscopic description supplied by

continuum gas dynamics from the mesoscopic description supplied by the kinetic theory.

In order to obtain the density, ρ = ρ(t, x), in ordinary space, we have to integrate

f(t, x, v) with respect to v:

ρ(t, x) :=

∫
R3

f(t, x, v) dv (3.138)

The bulk (macroscopic, mass) velocity u = u(t, x) of the gas is the average of the

molecule velocities v at a certain point x and time instant t; since f(t, x, v) is proportional

to the probability for a molecule to have a given velocity, u is given by

u(t, x) :=

∫
R3 f(t, x, v)v dv∫
R3 f(t, x, v) dv

=

∫
R3 f(t, x, v)v dv

ρ(t, x)
(3.139)

that is to say, the momentum density reads:

ρ(t, x)u(t, x) :=

∫
R3

f(t, x, v)v dv (3.140)

or, for each component:

ρ(t, x)ui(t, x) :=

∫
R3

f(t, x, v)vi dv, 1 ≤ i ≤ 3 (3.141)

The bulk velocity u is what we can directly perceive of the molecular motion by means

of macroscopic observations; it is zero for gases in equilibrium in a box at rest. Each

molecule has its own velocity v, which can be decomposed into the sum of v and another

velocity

c(t, x, v) := v − u(t, x) (3.142)
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called the random, peculiar, or internal velocity; c is clearly due to the deviations

of v from u, and even if a given infinitesimal region dx of the gas is at rest (u = 0), the c

is not zero, which coincides with the molecules velocity v in this case. And it is clear that

the average of c is zero, i.e, ∫
R3

c(t, x, v)f(t, x, v) dv = 0 (3.143)

The quantity ρui that appears in Eq. (3.141) is the i-th component of the mass

flow or of the momentum density of the gas. Other quantities of similar nature

include:

Remark 3.14. In the following (i)-(iii) calculation, considering Eq. (3.143), note that

c, ci depend on v, whereas u, ui, uij are independent of v.

(i) The momentum flow uij(t, x): for i, j = 1, 2, 3,

uij(t, x) :=

∫
R3

f(t, x, v)vivj dv

⇐⇒
∫
R3

f(ci + ui)(cj + uj) dv

=

∫
R3

fcicj dv + ui

∫
R3

fvj dv + uj

∫
R3

fvi dv − uiuj

∫
R3

f dv

= pij + ui(ρuj) + uj(ρui)− uiujρ

= pij + ρuiuj

(3.144)

where

pij := pij(t, x) =

∫
R3

f(t, x, v)cicj dv, for i, j = 1, 2, 3 (3.145)

plays the role of stress tensor (because the microscopic momentum flow associated with

it is equivalent to forces distributed on the boundary of any region of gas, according to

the macroscopic description).

(ii) The energy density per unit volume w(t, x):

w(t, x) :=
1

2

∫
R3

f(t, x, v)|v|2 dv

⇐⇒ 1

2

∫
R3

f
(
|u|2 + 2c · u+ |c|2

)
dv

=
1

2

∫
R3

f |u|2 dv + 1

2

∫
R3

f |c|2 dv + u ·
∫
R3

fcdv︸ ︷︷ ︸
:=0

=
1

2
ρ|u|2 + ρe

(3.146)

where e is internal energy per unit mass (associated with random motions) defined

by:

ρe :=
1

2

∫
R3

|c|2f dv (3.147)
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in addition, the isotropic pressure p corresponds to 1
3

∑3
i=1 pii, so

1

2

3∑
i=1

pii = ρe and p =
1

3

3∑
i=1

pii

=⇒p =
2

3
ρe

(3.148)

the Eq. (3.148) above is the equation of state. For a monatomic perfect gas, e = e(T )

with T denoting temperature, then p/ρ is constant at constant temperature, i.e., the

internal energy of gas only depends on its temperature. A perfect gas is given by

p = ρRT (3.149)

where R is gas constant (the Boltzmann constant kB times the Avogadro number of gas

particles, i.e., kB = R/NA); if further compareing the Eq. (3.146) with the Eq. (3.66), we

observe that

p = ρRT =
2

3
ρe

R=1
===⇒ T =

2

3
e (3.150)

with a normalized R = 1; or, that is to say, if we particularly select R = 2
3 , we can re-write

p = ρRT =
2

3
ρe

R= 2
3===⇒ T = e, (3.151)

which means that we are able to replace the internal energy e(t, x) by the temperature

T (t, x) in those macroscopic equations.

(iii) The energy flow ri(t, x): for i = 1, 2, 3,

ri :=
1

2

∫
R3

vi|v|2f(t, x, v) dv

⇐⇒ 1

2

∫
R3

(ci + ui)(|u|2 + 2c · u+ |c|2)f dv

= ui
1

2

∫
R3

(|u|2 + |c|2)f dv︸ ︷︷ ︸
1
2ρ|u|2+ρe

+
1

2

3∑
j=1

2uj

∫
R3

cicjf dv︸ ︷︷ ︸
pij

+
1

2

∫
R3

ci|c|2f dv︸ ︷︷ ︸
qi

= ui

(
1

2
ρ|u|2 + ρe

)
+

3∑
j=1

ujpij + qi

(3.152)

where qi are the components of the so-called heat-flow vector:

qi =
1

2

∫
R3

ci|c|2f dv (3.153)

The decomposition in Eq. (3.152) shows that

Microscopic energy flow

=Macroscopic flow of energy (both kinetic and internal)

+Work done by stresses (per unit area and unit time)

+Heat flow

(3.154)
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Eq. (3.152) shows that the momentum flow is described by the components of a symmetric

tensor of second order, because we need to describe the flow in the i-th direction of the

momentum in the j-th direction. It is to be expected that in a macroscopic description

only a part of this tensor will be identified as a bulk momentum flow, because in general,

ui,j will be different from zero even in the absence of a macroscopic motion (u = 0).

Remark 3.15. As the identities derived above apply to the solution of Boltzmann equa-

tion, in particular, the Maxwellian Equilibrium Distribution necessarily holds: for the

simplest global Maxwellian distribution (independent of t and x) with the collision invari-

ant ϕ = a+ b · v + c|v|2,

Mf = A ea+b·v+c|v|2 = A ea+2βu·v−β|v|2 = A e−β(|v|2−2v·u− a
β ) = A e−β|v−u|2 (3.155)

where c = −β, b = 2βu, a = −β|u|2 and A is a positive constant a, c, |b|2 (A, β, u constitute

a new set of constants).

By computing the macroscopic quantities as above for a generic (not necessarily global)

Maxwellian, we find that

β(t, x) =
3

4e(t, x)

(3.150)
======

1

2T (t, x)

A(t, x) =

(
3

4πe(t, x)

) 3
2 (3.150)
======

1

[2T (t, x)]
3
2

pij =
2

3
ρ(t, x)e(t, x)δij , for i, j = 1, 2, 3

qi =0, for i = 1, 2, 3.

(3.156)

which is actually the Maxwellian Equilibrium Distribution defined as in Eq. (3.67).

To obtain the differential relations satisfied by the macroscopic quantities introduced

above, which describes the balance of mass, momentum, and energy and have the same

form as in continuum mechanics, we consider the spatially-inhomogeneous Boltzmann

equation:
∂f

∂t
+ v · ∇xf = Q(f, f) (3.157)

multiplying both sides of the Eq. (3.157) above by the collision invariants ϕk, k = 0, 1, 2, 3, 4

and integrate with respect to v, we have∫
R3

ϕkQ(f, f) dv = 0 (3.158)

and hence, if it is permitted to change the order by which we differentiate with respect to

t integrate with respect to v:

∂

∂t

∫
R3

ϕkf dv =

3∑
i=1

∂

∂xi

∫
R3

viϕkf dv = 0, k = 0, 1, 2, 3, 4 (3.159)
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If we take successively k = 0, 1, 2, 3, 4 and use the definitions introduced above, we

obtain

∂

∂t
ρ+

3∑
i=1

∂

∂xi
(ρui) = 0,

∂

∂t
(ρuj) +

3∑
i=1

∂

∂xi
(ρuiuj + pij) = 0, j = 1, 2, 3

∂

∂t

(
1

2
ρ|u|2 + ρe

)
+

3∑
i=1

∂

∂xi

ui(1

2
ρ|u|2 + ρe

)
+

3∑
j=1

ujpij + qi

 = 0.

(3.160)

These equations have the so-called conservation form, expressing the circumstance that

a certain quantity (whose density appears differentiated with respect to time) is created

or destroyed in a certain region Ω because something is flowing through the boundary ∂Ω.

They are also the five basic equations of continuum mechanics, however, consisting of

more than five unknowns:

� ρ, e are two unknown scalars.

� u = (u1, u2, u3) and q = (q1, q2, q3) are vectors, including six unknowns components.

� p ∈M3×3 is symmetric matrix, including six unknowns components.

for a total of 14; and the known relation 1
3

∑3
i=1 pii =

2
3ρe leaves us with 13 unknowns.

“The entire purpose of kinetic theory is to relate the 13-scalar fields...to

various circumstances of the kinetic gas.”

To make these quantities consistent, we need to impose “constitutive equations” to

link pij , qi with ρ, ui, e; as particular famous examples, we present:

� The Euler Equation (ideal fluids)

Take p(t, x) to be a scalar-valued function, and

pij = p(t, x)δij , qi = 0 (3.161)

Then the classical Euler equation result.

� The Navier-Stokes Equation (viscous fluids)

Let p(t, x) be as above and denote by ν, µ certain viscosity coefficients. One takes

pij = p(t, x)δij − ν

(
∂ui
∂xj

+
∂uj
∂xi

)
− µ

3∑
k=1

∂uk
∂xk

δij (3.162)

qi = −κ ∂T
∂xi

(3.163)

27



In fact, when integrating both sides of the equations with respect to x over Ω, the

term differentiated with respect to x can be replaced by surface integrals over ∂Ω, thanks

to the Divergence Theorem. If these surface integrals turn out to be zero, then we obtain

that the total mass:

M(t) =

∫
Ω

ρ(t, x) dx (3.164)

the total momentum:

U(t) =

∫
Ω

ρ(t, x)u(t, x) dx (3.165)

and the total energy:

E(t) =

∫
Ω

(
1

2
ρ(t, x)|u(t, x)|2 + ρ(t, x)e(t, x)

)
dx (3.166)

are conserved in Ω, the typical cases of which include:

� Ω is R3 and suitable conditions at infinity ensure that the fluxes of the mass, mo-

mentum, and energy flow vectors though a large sphere vanish when the radius of

the sphere tends to infinity.

� Ω is a box with periodicity conditions, e.g., flat torus T3, because essentially there

are no boundaries.

� Ω is a compact domain with the condition of (Perfectly) Reflecting Boundaries, e.g.,

specular reflection, then the boundary term on ∂Ω disappear in the mass and energy

equation but not in the momentum equation; thus only M and E are conserved.

Remark 3.16. For the spatially-homogeneous case, where the various quantities do not

depend on x, all the spatial derivatives then disappear from Eqs. (3.160) and the densities

ρ, ρv and 1
2ρ|v|

2 + ρe are conserved, i.e., do not change with time.

Now, let’s formally derive the global conservation law in the case of (Perfectly) Reflect-

ing Boundaries: for every collision invariant ϕ = ϕ(v), we first have the local conservation

law

∂t ⟨f, ϕ⟩+∇x · ⟨vf, ϕ⟩ = 0 (3.167)

Upon integrating this over Ω and applying the Divergence Theorem, we obtain

d

dt

∫
Ω

⟨f, ϕ⟩ dx = −
∫
∂Ω|A

n(x) · ⟨vf, ϕ⟩ dA(x). (3.168)

This will yield a global conservation law whenever the above integrals make sense and the

right-hand side vanishes.

If ∂Ω|R is perfectly reflecting and f(t, x, v) satisfies a boundary condition of the general

reflection form (3.115), then the normal component of the flux on the right-hand side of

(3.168) becomes

n(x) · ⟨vf, ϕ⟩ =
∫
n(x)·v′>0

ϕ(v′)[n(x) · v′] dv′ −
∫
n(x)·v<0

ϕ(v)|n(x) · v|f(t, x, v) dv

=

∫
n(x)·v′>0

[
ϕ(v′)−

∫
n(x)·v<0

ϕ(v)R(v, v′) dv

]
[n(x) · v′]f(t, x, v′) dv′

(3.169)
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which then implies that, by considering Con. (2),

n(x) · ⟨vf, ϕ⟩ = 0, for every x ∈ ∂Ω|R (3.170)

if we set ϕ = 1. Therefore, the mass is globally conserved for every kind of reflecting

boundary condition in the form of (3.115).

However, the same statement cannot be said for momentum and energy. In what

follows, we shall show that some models of reflecting boundaries can have additional

conservation laws that are consistent with the geometry of Ω:

� Specular Reflection Model. For the specular reflection kernel (3.121), we have

ϕ(v′)−
∫
n(x)·v<0

ϕ(v)RS(v, v
′) dv = ϕ(v′)− ϕ(v′ − 2[n(x) · v′]n(x)). (3.171)

Upon setting ϕ(v) = v and ϕ(v) = 1
2 |v|

2, we obtain

v′ −
∫
n(x)·v<0

vRS(v, v
′) dv =2[n(x) · v′]n(x),

|v′|2 −
∫
n(x)·v<0

|v|2RS(v, v
′) dv =0

(3.172)

By (3.169), we find that, for every x ∈ ∂Ω|R,

n(x) · ⟨v ⊗ vf⟩ =2n(x)

∫
n(x)·v′>0

[n(x) · v′]f(t, x, v′) dv′

n(x) ·
〈
vf,

1

2
|v|2
〉

=0.

(3.173)

which then implies that the specular reflection boundary condition (3.120) thereby

only globally conserves mass and energy. Moreover, it globally conserves momentum

in every direction n⊥(x) ∈ Sd−1 such that n⊥(x) ·n(x) = 0 at every x ∈ ∂Ω|R. Such
n⊥(x) will exits only for those domains Ω with a translational symmetry.

� Isotropic Reflection Model. For the isotropic reflection kernel (3.124), we have

ϕ(v′)−
∫
n(x)·v<0

ϕ(v)RI(v, v
′) dv = ϕ(v′)− 1

c

∫
n(x)·o>0

|n(x) · o|ϕ(|v′|o) do (3.174)

where c is given by (3.123). Uppon letting ϕ = v and ϕ = 1
2 |v|

2, we obtain

v′ −
∫
n(x)·v<0

vRI(v, v
′) dv =v′ − 1

c

∫
n(x)·o>0

|n(x) · o||v′|o do = v′ +
C

c
|v′|n(x),

|v′|2 −
∫
n(x)·v<0

|v|2RI(v, v
′) dv =|v′|2 − 1

c

∫
n(x)·o>0

|n(x) · o||v′|2 do,

(3.175)

where the constant C is given by

C =

∫
n(x)·o′>0

|n(x) · o′|do′. (3.176)
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By (3.169), we find that, for every x ∈ ∂Ω|I ,

n(x) · ⟨v ⊗ vf⟩ =
∫
n(x)·v′>0

(
v′ +

C

c
|v′|2n(x)

)
[n(x) · v′]f(t, x, v′) dv′

n(x) ·
〈
vf,

1

2
|v|2
〉

=0.

(3.177)

which then implies that the isotropic reflection boundary condition (3.122) thereby

only globally conserves mass and energy.

� Diffusive (Thermal) Reflection Model. For the diffusive (thermal) reflection kernel

(3.127), we have

ϕ(v′)−
∫
n(x)·v<0

ϕ(v)RD(v, v′) dv = ϕ(v′)−
(

2π

TW

) 1
2
∫
n(x)·v<0

ϕ(v)|n(x)·v|M(v;TW ) dv.

(3.178)

Uppon letting ϕ = v and ϕ = 1
2 |v|

2, we obtain,

v′ −
∫
n(x)·v<0

vRD(v, v′) dv

=v′ −
(

2π

TW

) 1
2
∫
n(x)·v<0

v|n(x) · v|M(v;TW ) dv

=v′ +

(
2π

TW

) 1
2

n(x)

∫
n(x)·v<0

|n(x) · v|2M(v;TW ) dv

=v′ +

(
πTW
2

) 1
2

n(x),

(3.179)

and

|v′|2 −
∫
n(x)·v<0

|v|2RD(v, v′) dv

=|v′|2 −
(

2π

TW

) 1
2
∫
n(x)·v<0

|v|2|n(x) · v|M(v;TW ) dv

=|v′|2 −
(

2π

TW

) 1
2
∫
n(x)·v<0

|n(x) · v|3M(v;TW ) dv − (d− 1)TW

=|v′|2 − (d+ 1)TW .

(3.180)

By (3.169), we find that, for every x ∈ ∂Ω|D,

n(x) · ⟨v ⊗ vf⟩ =
∫
n(x)·v′>0

[
v′ +

(
2π

TW

) 1
2

n(x)

]
[n(x) · v′]f(t, x, v′) dv′,

n(x) ·
〈
vf,

1

2
|v|2
〉

=

∫
n(x)·v′>0

(
1

2
|v′|2 − d+ 1

2
TW

)
[n(x) · v′]f(t, x, v′) dv′,

(3.181)

which implies that the diffuse (thermal) reflection boundary condition thereby glob-

ally conserves only mass, instead of momentum and energy.
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3.8 Properties and Estimates of the Collision Operator

In this subsection, we present some properties and estimates on Q = Q+ − Q− in

Lebesgue and Sobolev spaces, including the following two different types of estimates:

� For the bilinear form Q(g, f) = Q+(g, f)−Q−(g, f):

To establish the bilinear estimates, we shall impose an additional assumption on the

angular kernel: no frontal collision should occur, i.e., b(cos θ) should vanish for θ

close to π:

∃θb > 0, supp b(cos θ) ⊂ {θ | 0 ≤ θ ≤ π − θb}. (3.182)

� For the quadratic form Q(f, f) = Q+(f, f)−Q−(f, f):

The assumption (3.182) is not necessary, indeed, Q+(f, g) = Q̃+(g, f) if Q̃+ is the

Boltzmann gain operator associated with the kernel b̃(cos θ) = b(cos(π − θ)).

In particular,

b(cos θ) and [b(cos θ) + b(cos(π − θ))]10≤θ≤π
2

(3.183)

define the same quadratic operatorQ+, and the latter satisfies the assumption (3.182)

automatically.

Note that Q+(g, f) and Q+(f, g) will not necessarily satisfy the same estimates, since

the assumption (3.182) is not symmetric. To exchange the roles of f and g, we will

therefore be led to introduce the assumption: no grazing collision should occur, i.e.,

∃θb > 0, supp b(cos θ) ⊂ {θ | θb ≤ θ ≤ π}. (3.184)

Theorem 3.17. let k, η ∈ R, s ∈ R+, p ∈ [1,∞], and let B be a collision kernel of the

form (3.26), satisfying the assumption (3.182). Then, the following estimates hold:

∥Q+(g, f)∥Lp
η(Rd) ≤ Ck,η,p(B)∥g∥L1

|k+η|+|η|(Rd)∥f∥Lp
k+η(Rd), (3.185)

∥Q+(g, f)∥W s,p
η (Rd) ≤ Ck,η,p(B)∥g∥

W
⌈s⌉,1
|k+η|+|η|(Rd)

∥f∥W s,p
k+η(Rd), (3.186)

where Ck,η,p(B) = cst
[
sin
(
θb
2

)]min(η,0)− 2
p′ ∥b∥L1(Sd−1)∥Ψ∥L∞

−k
, and “cst” denotes various

constants which does not depend on the collision kernel B.

Remark 3.18. Note that if the assumption (3.182) is replaced by assumption (3.184),

then the same estimates hold with Q+(g, f) replaced by Q+(f, g).

Proof. The proof is cited from [?, Theorem 2.1] with some refinements, and still based on

duality that

∥Q+(g, f)∥Lp
η(Rd) = sup

∥ϕ∥
L
p′
−η

(Rd)
≤1

{∫
Rd

Q+(g, f)(v)ϕ(v) dv

}
. (3.187)

We apply the pre-post collisional change of variables, namely(v, v∗, σ) → (v′, v′∗, q̂) as

in (3.39), to obtain∫
Rd

Q+(g, f)ϕ(v) dv =

∫
Rd×Rd

(∫
Sd−1

B(v − v∗, σ)ϕ(v
′) dσ

)
g(v∗)f(v) dv∗ dv (3.188)
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for all ∥ϕ∥
Lp′

−η(Rd)
≤ 1. Let us define the linear operator by

Sϕ(v) =

∫
Sd−1

B(v − v∗, σ)ϕ

(
v + |v|σ

2

)
dσ. (3.189)

Then, ∫
Rd

Q+(g, f)ϕ(v) dv =

∫
Rd

g(v∗)

(∫
Rd

f(v) [τv∗S (τ−v∗ϕ) (v) dv]

)
dv∗. (3.190)

We shall delve into the operator S in the weighted L1 and L∞ norms. For brevity, we

denote v+ =
(

v+|v|σ
2

)
.

By the use of inequality:

sin

(
θb
2

)
|v| ≤ |v+| ≤ |v| (3.191)

which is a consequence of (3.182), we find

∥Sϕ∥L∞
−k−η

≤ cst

[
sin

(
θb
2

)]min(η,0)

∥b∥L1(Sd−1)∥Ψ∥L∞
−k

∥ϕ∥L∞
−η
. (3.192)

Next, we turn to the L1-estimate. First,

∥Sϕ∥L1
−k−η

=

∫
Rd

∫
Sd−1

Ψ(|v|) ⟨v⟩−k−η
b(cos θ)|ψ(v+)|dσ dv

≤
[
sin

(
θb
2

)]min(η,0)

∥Ψ∥L∞
−k

∫
Rd

∫
Sd−1

b(cos θ)|ψ(v+)|
〈
v+
〉−η

dσ dv

(3.193)

The change of variable v 7−→ v+ is allowed because b has compact support in [0, π − θb],

and its Jacobian is 2d−1

cos2( θ
2 )
. By applying it, we find

∥Sϕ∥L1
−k−η

≤
[
sin

(
θb
2

)]min(η,0)

∥Ψ∥L∞
−k

∫
Rd

∫
Sd−1

b(cos θ)|ψ(v+)|
〈
v+
〉−η

dσ dv

≤
[
sin

(
θb
2

)]min(η,0)

∥Ψ∥L∞
−k

∫
Rd

∫
Sd−1

b(cos θ)|ϕ(v+)|
〈
v+
〉−η 2d−1

cos2
(
θ
2

) dv+ dσ

≤cst

[
sin

(
θb
2

)]min(η,0)−2

∥b∥L1(Sd−1)∥Ψ∥L∞
−k

∥ϕ∥L1
−η

(3.194)

By the Riesz-Thorin Interpolation Theorem, from inequalities (3.193)-(3.194), we deduce

that

∥Sϕ∥Lp
−k−η

≤ Ck,η,φ′(B)∥ϕ∥Lp
−η
, 1 ≤ p ≤ ∞, (3.195)

where

Ck,η,φ′(B) = cst

[
sin

(
θb
2

)]min(η,0)− p
2

∥b∥L1(Sd−1)∥Ψ∥L∞
−k
. (3.196)
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Plugging this inequality (3.195) into (3.190), we find∣∣∣∣∫
Rd

Q+(g, f)ϕ(v) dv

∣∣∣∣ ≤∫
Rd

(∫
Rd

|f(v)|
∣∣∣ [τ−v∗S (τv∗ϕ)] (v) dv

∣∣∣) |g(v∗)| dv∗

≤
∫
Rd

∥f∥Lp
k+η

∥τ−v∗S (τv∗ϕ) ∥Lp′
−k−η

|g(v∗)|dv∗

≤∥f∥Lp
k+η

∫
Rd

|g(v∗)| ⟨v∗⟩|k+η| ∥S(τv∗)∥Lp′
−η

dv∗

≤Ck,η,φ′(B)∥f∥Lp
k+η

∫
Rd

|g(v∗)| ⟨v⟩|k+η| ∥τv∗ϕ∥Lp′
−η

dv∗

≤Ck,η,φ′(B)∥f∥Lp
k+η

∥ϕ∥
Lp′

−η

∫
Rd

|g(v∗)| ⟨v∗⟩|k+η|+|η|
dv∗

≤Ck,η,φ′(B)∥f∥Lp
k+η

∫
Rd

|g(v∗)| ⟨v∗⟩|k+η|+|η|
dv∗

≤Ck,η,φ′(B)∥f∥Lp
k+η

∥g∥L1
|k+η|+|η|

(3.197)

This concludes the proof of the estimate (3.185).

For the proof of the estimate (3.186), it is based on the formula

∇Q±(g, f) = Q±(∇g, f) +Q±(g,∇f) (3.198)

which is direct consequence of the bi-linearity and the Galilean Invariant property of the

Boltzmann operator, namely τhQ(g, f) = Q(τhg, τhf). From Eq. (3.198), it is easy tp

deduce a Leibniz formula for the derivatives of Q+ at any order, and the Eq. (3.186)

easily follows for any s ∈ N. Indeed, whenever s ∈ N we can apply the estimate (3.185)

to each term of the Leibniz formula for ∂µQ+(g, f) and find

∥Q+(g, f)∥p
W s,p

η
=
∑
|ν|≤s

∥∂νQ+(g, f)∥p
Lp

η

=
∑
|ν|≤s

∑
µ≤ν

(
ν

µ

)
∥Q+

(
∂µg, ∂ν−µf

)
∥p
Lp

η

≤Ck,η,p(B)
∑
|ν|≤s

∑
µ≤ν

(
ν

µ

)
∥∂µg∥p

L1
|k+η|+|η|

∥∂ν−µf∥p
Lp

k+η

≤Ck,η,p(B)∥g∥p
W s,1

|k+η|+|η|
∥f∥p

W s,p
k+η

(3.199)

such that the general case of (3.186) is obtained by use of the Riesz-Thorin Interpolation

Theorem, with respect to the variable f .

Remark 3.19. (i) The same estimate will hold for the quadratic form Q+(f, f) in the

sense that: for k, η ∈ R, p ∈ [1,+∞],

∥Q+(f, f)∥Lp
η(Rd) ≤ Ck(B)∥f∥L1

|k+η|+|η|(Rd)∥f∥Lp
k+η(Rd), (3.200)

∥Q+(f, f)∥W s,p
η (Rd) ≤ Ck(B)∥f∥

W
⌈s⌉,1
|k+η|+|η|(Rd)

∥f∥W s,p
k+η(Rd), (3.201)

where Ck,η,p(B) = cst∥b∥L1(Sd−1)∥Ψ∥L∞
−k

.
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(ii) For the particular case η ≥ 0, it is possible to obtain slightly better weight exponents

in Theorem 3.17 above as well as the quadratic estimate: indeed, we can use the inequality

|v|2 ≤ |v′|2 + |v′∗|2 (3.202)

to split the weight on the two arguments of Q+ and get

∥Q+(g, f)∥Lp
η
≤ cst∥Q+(G,F )∥Lp (3.203)

where F (v) = f(v) ⟨v⟩η and G(v) = g(v) ⟨v⟩η. When η ≥ 0, the conclusion of Theo-

rem 3.17 thus becomes

∥Q+(g, f)∥Lp
η(Rd) ≤ Ck,η,p(B)∥g∥L1

k+η(Rd)∥f∥L1
k+η(Rd), (3.204)

∥Q+(g, f)∥W s,p
η (Rd) ≤ Ck,η,p(B)∥g∥

W
⌈s⌉,1
k+η (Rd)

∥f∥W s,p
k+η(Rd). (3.205)

For the loss operator Q−, we shall present the lower bound:

Proposition 3.20. Assume that the collision kernel B has a lower bound in the integral

sense that ∫
Sd−1

B(v − v∗, σ) dσ ≥ KB |v − v∗|γ , (KB > 0, γ > 0) (3.206)

Then, for all f ∈ L1
2(Rd) with finite entropy H(f) =

∫
Rd f log f < CH , there exists a

constant Kf (only depending on a lower bound on the mass
∫
Rd fdv and upper bounds on

the energy
∫
Rd f |v|2dv and entropy H(f)) such that

Q−(f, f)(v) := f(v)L[f ](v) ≥ Kff(v) (1 + |v|)γ . (3.207)

Similarly, if in the right-hand side of (3.206), the term |v − v∗|γ is replaced by min{|v −
v∗|γ , 1}, then the conclusion (3.207) should be replaced by

Q−(f, f)(v) ≥ Kff(v). (3.208)

Proof. Start from the estimate that, for j > 1,∫
|v−v∗|<r

f(v∗) dv∗ ≤
∫
|v−v∗|<r,f(v∗)<j

f(v∗) dv∗ +
1

log j

∫
f(v∗)>j

f(v∗) log f(v∗) dv∗

(3.209)

For a suitable choice of r and j only depending on the mass
∫
Rd f(v)dv and upper bound

entropy CH , we get ∫
|v−v∗|<r

f(v∗) dv∗ <
1

2

∫
Rd

f(v) dv (3.210)

Furthermore, on the one hand,

L[f ](v) =

∫
Rd

(∫
Sd−1

b(cos θ) dσ

)
|v − v∗|γf(v∗) dv∗

>KB

[∫
|v−v∗|>r

f(v∗) dv∗

]
rγ

>KB

[
1

2

∫
Rd

f(v) dv

]
rγ

:=
KB

2
∥f∥L1rγ

(3.211)
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on the other hand, to get another estimate of L[f ], we notice that

|v − v∗|γ ≥ |v|γ − |v∗|γ , for 0 < γ ≤ 1, (3.212)

Then, we obtain

L[f ](v) ≥ KB

∫
Rd

f(v∗)|v − v∗|γ dv∗ ≥KB

∫
Rd

f(v∗) (|v|γ − |v∗|γ) dv∗

≥
(∫

Rd

f(v∗) dv∗

)
|v|γ −

∫
Rd

f(v∗)|v∗|γ dv∗

≥
(∫

Rd

f(v∗) dv∗

)
|v|γ −

∫
Rd

f(v∗)|v∗|2 dv∗

:=∥f∥L1 |v|γ − ∥f∥L1
2

(3.213)

Combine the estimates (3.211)-(3.213), we finally conclude that

L[f ](v) ≥ Kf (1 + |v|)γ . (3.214)

Remark 3.21. For 1 < γ ≤ 2, we can apply the following estimate with the help of

convexity of the hard potential kernel, if the mass
∫
Rd fdv is normalized as one as well as

the momentum
∫
Rd fvdv is kept as zero:

L[f ](v) =

∫
Rd

B(v − v∗, σ)f(v∗) dσ dv∗

≥KB

∫
Rd

|v − v∗|γf(v∗) dσ dv∗

≥KB

∣∣∣∣∫
Rd

(v − v∗)f(v∗) dv∗

∣∣∣∣γ
≥KB |v|γ

(3.215)

where the Jensen’s inequality is utilized in the second inequality above.

3.9 Fourier Transform of the Collision Operator (Bobylev Iden-

tity)

The Fourier transformation has been widely used in the analysis of various kind of

partial differential equations. However, it used to be very painful to find an elegant

representation of the Boltzmann equation in the Fourier space, even though the Boltzmann

operator possesses a nice weak formulation. Thanks to A. V. Bobylev, this problem turned

out not as intricate as one may imagine, at least for the Maxwellian molecules. Since then,

the so-called “Bobylev Identity” has become an extremely powerful technique in the study

of the Boltzmann equation, especially in the case of spatially homogeneous theory.

Proposition 3.22. Consider the Boltzmann collision operator Q(g, f) with its collision

kernel B being the Maxwellian molecule b, i.e., B does not depend on |v − v∗|,

Q(g, f)(v) =

∫
R3

∫
S2
b

(
v − v∗
|v − v∗|

· σ
)
[g(v′∗)f(v

′)− g(v∗)f(v)] dσ dv∗. (3.216)
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Then, the following formulas hold,

F
[
Q+(g, f)

]
(ξ) =

∫
S2
b

(
ξ

|ξ| · σ

)
ĝ(ξ−)f̂(ξ+) dσ,

F
[
Q−(g, f)

]
(ξ) =

∫
S2
b

(
ξ

|ξ| · σ

)
ĝ(0)f̂(ξ) dσ,

(3.217)

where,

ξ+ =
ξ

2
+

|ξ|
2
σ, ξ− =

ξ

2
− |ξ|

2
σ. (3.218)

Proof. By performing the weak formulation, for any test function ϕ, we have,∫
R3

Q+(g, f)(v)ϕ(v)dv =

∫
R3

∫
R3

∫
S2
b

(
v − v∗
|v − v∗|

· σ
)
g(v∗)f(v)ϕ(v

′) dσ dv∗ dv. (3.219)

Selecting ϕ(v) = e− iv·ξ in the identity above, we have

F
[
Q+(g, f)

]
(ξ)

=

∫
R3

∫
R3

∫
S2
b

(
v − v∗
|v − v∗|

· σ
)
g(v∗)f(v) e

− i( v+v∗
2 +

|v−v∗|
2 σ)·ξ dσ dv∗ dv

=

∫
R3

∫
R3

∫
S2
b

(
v − v∗
|v − v∗|

· σ
)
g(v∗)f(v) e

− i v+v∗
2 ·ξ e− i

|v−v∗|
2 σ·ξ dσ dv∗ dv,

(3.220)

according to the general change of variable,∫
S2
F (k · σ, l · σ) dσ =

∫
S2
F (l · σ, k · σ) dσ, |l| = |k| = 1, (3.221)

due to the existence of an isometry on S2 exchanging l and k, we have, by exchanging the

rule of ξ
|ξ| and

v−v∗
|v−v∗| , ∫

S2
g(v∗)f(v)b

(
v − v∗
|v − v∗|

· σ
)
e− i

|v−v∗|
2 σ·ξ dσ

=

∫
S2
g(v∗)f(v)b

(
ξ

|ξ|
· σ
)
e− i

|ξ|
2 σ·(v−v∗) dσ

(3.222)

Thus,

F
[
Q+(g, f)

]
(ξ)

=

∫
R3

∫
R3

∫
S2
g(v∗)f(v)b

(
v − v∗
|v − v∗|

· σ
)
e− i v+v∗

2 ·ξ e− i
|v−v∗|

2 σ·ξ dσ dv∗ dv

=

∫
R3

∫
R3

∫
S2
g(v∗)f(v)b

(
ξ

|ξ|
· σ
)
e− i v+v∗

2 ·ξ e− i
|ξ|
2 σ·(v−v∗) dσ dv∗ dv

=

∫
R3

∫
R3

∫
S2
g(v∗)f(v)b

(
ξ

|ξ|
· σ
)
e− iv·( ξ

2+
|ξ|
2 σ) e− iv∗·( ξ

2−
|ξ|
2 σ) dσ dv∗ dv

=

∫
S2
b

(
ξ

|ξ|
· σ
)
f̂(ξ+)ĝ(ξ−) dσ,

(3.223)

where, unlike the elastic case, the ξ+ and ξ− are defined as

ξ+ =
ξ

2
+

|ξ|
2
σ, ξ− =

ξ

2
− |ξ|

2
σ. (3.224)
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And the formula for F [Q−(g, f)] (ξ) is then easily obtained by the same kind of but

more simpler computations.

For a given probability measure F or its density function f , we define the corresponding

characteristic function φ(ξ) by the Fourier transform:

φ(ξ) = f̂(ξ) :=

∫
R3

e− iv·ξf(v) dv =

∫
R3

e− iv·ξ dF (v), (3.225)

where the f is regarded as the distribution density function of the cumulative distribution

function F in the sense of Radon-Nikodym derivative.

And its inversion formula by normalization writes

f(v) =

∫
R3

eiv·ξ f̂(ξ) dξ =

∫
R3

eiv·ξφ(ξ) dξ. (3.226)
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how the research of the homogeneous Boltzmann equation in probability measure sense

developed: from cutoff to non-cutoff, from the Maxwellian molecule to hard/soft potential,
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