Let G be a Kac-Moody Group. Our goal today would be ot discuss the topological properties on the non-negative half $G_{\geq 0}$ (some of our results will extend to any semifield \mathbb{k}, but we often require to consider only $\mathbb{k}=\mathbb{Z}$ for the necessary topological properties).

6.1 Setup

Let G be a Kac-Moody Group (one could consider GL_{n}), W its Weyl group and by definition,

$$
\begin{align*}
& U_{\geq 0}^{ \pm}=\bigsqcup_{w \in W} U_{w,>0}^{ \pm} \\
& G_{\geq 0}=\bigsqcup_{u, v \in W} G_{u, v,>0}=\bigsqcup_{u, v \in W} U_{u,>0}^{+} T_{>0} U_{v,>0}^{-} \tag{1}
\end{align*}
$$

Recall that from the previous lecture, we have the bijection of sets

$$
\begin{aligned}
U_{w, \geq 0}^{ \pm} & =\mathbb{R}_{>0}^{\ell(w)} \\
G_{u, v,>0} & =\mathbb{R}_{>0}^{\ell(u)-\ell(v)+\mathrm{rk}(G)} .
\end{aligned}
$$

where u, v, w are elements of W and ℓ is the length function of W (in the sense of a Coxeter Group). In this lecture, we shall upgrade this bijection of sets into a homeomorphism.
Furthermore, we shall show that Equation 1 is also a cellular decomposition (i.e. the Hausdorff closure of each cell $\left(\mathbb{R}^{k}\right)$ is a union of cells. So $\overline{U_{w,>0}^{ \pm}}$is the union of cells of the form $U_{v,>0}^{ \pm}$.)

We use $G^{ \pm}$as a short hand for G^{+}or G^{-}(and similarly for U), do not be confused with the introduction of a new symbol.

6.2 Example

Let us first compute an example first. For this subsection only, let $G=\mathrm{GL}_{3}$. Then,

$$
\begin{align*}
& \left\{\left.\left(\begin{array}{lll}
1 & 0 & 0 \\
\alpha & 1 & 0 \\
\beta & \gamma & 1
\end{array}\right) \right\rvert\, \alpha, \beta, \gamma \in \mathbb{R}\right\}=U_{\uparrow}^{-} \xrightarrow{\sim} \mathbb{R}^{3} \tag{2}\\
& \left\{(\alpha, \beta, \gamma) \in \mathbb{R}^{3} \mid \alpha \gamma-\beta>0\right\} \Longrightarrow U_{\geq 0}^{-} \longrightarrow \mathbb{R}_{\geq 0}^{3}
\end{align*}
$$

One can see the second equality in two different ways. We could see that the Weyl Group of G is of type A_{2}, which is finite so, having the longest word w_{0} with a minimal length representation $c_{1} c_{2} c_{1}$,

$$
\begin{equation*}
\left(U_{\geq 0}^{-}\right)^{\circ}=U_{w_{0},>0}^{-}=\left\{y_{1}(a) y_{2}(b) y_{1}(c) \mid a, b, c \in \mathbb{R}_{>0}\right\} . \tag{3}
\end{equation*}
$$

Alternatively, one can recall the characterization of Totally Positive Matrices from Lecture 1, thus the submatrix $\left(\begin{array}{ll}\alpha & 1 \\ \beta & \gamma\end{array}\right)$ must have positive determinant (positive minor). From this example, we can also see that the closure relation is non-trivial.

We have that

$$
\begin{aligned}
U_{\geq 0}^{-}-U_{>0}^{-} & =U_{e,>0}^{-} \sqcup U_{s_{1}>0}^{-} \sqcup U_{s_{2},>0}^{-} \sqcup U_{s_{1} s_{2},>0}^{-} \sqcup U_{s_{2} s_{1},>0}^{-} \\
& =\mathbb{R}_{>0}^{0} \sqcup \mathbb{R}_{>0}^{1} \sqcup \mathbb{R}_{>0}^{1} \sqcup \mathbb{R}_{>0}^{2} \sqcup \mathbb{R}_{>0}^{2}
\end{aligned}
$$

but

$$
\mathbb{R}_{\geq 0}^{3}-\mathbb{R}_{>0}^{3}=\mathbb{R}_{>0}^{0} \sqcup \mathbb{R}_{>}^{1} \sqcup \mathbb{R}_{>0}^{1} \sqcup \mathbb{R}_{>0}^{1} \sqcup \mathbb{R}_{>0}^{2} \sqcup \mathbb{R}_{>0}^{2} \sqcup \mathbb{R}_{>0}^{2} .
$$

6.3 Results

Lemma 6.1. The non-negative half $U_{\geq 0}^{ \pm}$is closed in $U^{ \pm}$.
Proof. Without loss of generality, we shall consider the sets $U_{\geq 0}^{-}$and U^{-}.
Our strategy is to show that the following composition of maps is proper. If the following composition of maps is proper, then the map β has to be closed, showing our result.

$$
\left(\mathbb{R}_{\geq 0}\right)^{N} \xrightarrow{\alpha} U_{\geq 0}^{-} \xrightarrow{\beta} U^{-} \xrightarrow{\gamma} \frac{U^{-}}{\left[U^{-}, U^{-}\right]} \cong \mathbb{R}^{m}
$$

In order to define this map, we have to let $s_{d_{1}} s_{d_{2}} \ldots s_{d_{N}}$ be a reduced expression of the longest word. Then, we let an element $\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in\left(\mathbb{R}_{\geq 0}\right)^{N}$ be sent to $\prod_{i=1}^{N} y_{d_{i}}\left(a_{i}\right) \in U_{\geq 0}^{-} .\left(\prod_{i=1}^{N} c_{i}\right.$ is notational shorthand for $c_{1} c_{2} \ldots c_{N}$ noting that the order is important.)
But any expression of the form $\gamma \circ \beta\left(\prod_{i=1}^{N} y_{\alpha_{i}}\left(a_{i}\right)\right)$ is a m-dimensional vector with its i-coordinate $\sum_{1 \leq j \leq N, d_{i}=d_{j}} a_{j}$. Hence, for any compact rectangle of the form

$$
I=\left[0, b_{1}\right] \times\left[0, b_{2}\right] \times \ldots \times\left[0, b_{m}\right] \in \mathbb{R}^{m}
$$

the pre-image under our overall map is

$$
(\gamma \circ \beta \circ \alpha)^{-1}(I)=\left\{\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in\left(\mathbb{R}_{\geq 0}\right)^{N} \mid \sum_{1 \leq j \leq N, d_{i}=d_{j}} a_{j} \leq b_{i}\right\} .
$$

This is compact in $\left(\mathbb{R}_{\geq 0}\right)^{N}$.
Example 6.2. Let us be explicit about the map α and γ in the case of $G=\mathrm{GL}_{3}$. In this case, for $\left(a_{1}, a_{2}, a_{3}\right) \in\left(\mathbb{R}_{\geq 0}\right)^{3}$ and the longest word to be of the form $c_{1} c_{2} c_{1}$, where $y_{1}(a)$ corresponds to the matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

the maps α and γ are

$$
\begin{aligned}
\alpha\left(a_{1}, a_{2}, a_{3}\right) & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
a_{1}+a_{2} & 1 & 0 \\
a_{1} a_{2} & a_{2} & 1
\end{array}\right) \\
\gamma\left(\begin{array}{ccc}
1 & 0 & 0 \\
a_{1}+a_{2} & 1 & 0 \\
a_{1} a_{2} & a_{2} & 1
\end{array}\right) & =\left(a_{1}+a_{3}, a_{2}\right) .
\end{aligned}
$$

Next, we summarize various properties of Lusztig's Canonical Basis.
Theorem 6.3. Let G be a simply-laced Group and $V \in \operatorname{Irr}_{f . d .} \mathbb{C}[G]$ be an irreducible finite-dimensional complex representation. Then,
a) $\operatorname{End}(V)$ is a matrix group, with a fixed basis set S.
b) If $g \in G_{\geq 0}$, then there exists $\tilde{g} \in \operatorname{End}(V)$ such that the (i, j)-th entry $(\tilde{g})_{i j} \geq 0$ and $\prod_{i}(\tilde{g})_{i i} \geq 1$ when using the basis S.
c) Furthermore, as in (b), if $g \in G_{>0}$, then there exists $\tilde{g} \in \operatorname{End}(V)$ such that the (i, j)-th entry $(\tilde{g})_{i j}>0$ when using the basis S.
d) Let w be a highest weight vector, then w is an element of S.

Proof. See [Bump \& Schilling's Crystal Bases: Representations And Combinatorics §2.2, 15.3].
Remark 6.4. Here, $G_{>0}$ means the set $U_{>0}^{+} T_{>0} U_{>0}^{-}$.
Example 6.5. Let us consider $G=\mathrm{SL}_{n}$ with $V \cong \mathbb{C}^{n}$ the standard representation. We can write an element $g \in G_{\geq 0}$ having the form in $\operatorname{End}(V)=\operatorname{Mat}_{n \times n}(\mathbb{C})$,

$$
\begin{aligned}
\tilde{g} & =\left(\begin{array}{cccc}
a_{1} & 0 & \ldots & 0 \\
* & a_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \ldots & a_{n}
\end{array}\right)\left(\begin{array}{cccc}
1 & * & \ldots & * \\
0 & 1 & \ldots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a_{1}+b_{1} & * & \ldots & * \\
* & a_{2}+b_{2} & \ldots & * \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \ldots & a_{n}+b_{n}
\end{array}\right)
\end{aligned}
$$

where $a_{i}, b_{i} \in \mathbb{R}_{\geq 0}$. But, we have the determinant $\prod_{i} a_{i}=1$, showing that $\prod_{i}\left(a_{i}+b_{i}\right) \geq 1$.
Theorem 6.6. The non-negative part $G_{\geq 0}$ is closed in G.
Proof. Let us first do it for the case where G is simply-laced.
Part 1: The closure of $G_{\geq 0}$ is in $B^{-} B^{+}$.
A way to characterize an element $g \in G$ to be contained in $B^{-} B^{+}$is to say that whenever we have $V \in \operatorname{Irr}_{\text {f. d. }} \mathbb{C}[G]$ to be a faithful irreducible finite-dimensional complex representation, with highest weight vector λ, then the corresponding $\tilde{g} \in \operatorname{End}(V)$ satisfies $\tilde{g} \lambda \neq 0$. Using Theorem 6.3, we can see that any such g would satisfy $\prod_{i} \tilde{g}_{i i}>1$, and hence any g^{\prime} in the closure of $G_{>0}$ would satisfy $\prod_{i} \tilde{g}_{i i}^{\prime} \geq 1$, which implies that $\tilde{g^{\prime}} \lambda \neq 0$. Hence, the closure has to lie in $B^{-} B^{+}$.
Part 2: Consider the following diagram

Here, the maps α and γ are closed by Theorem 6.1 , while the map β is simply the identity component included into T. Hence, this concludes the case where G is simply-laced
If G is not simply-laced, we can use folding. Let \hat{G} be a simply-laced group with a diagram automorphism $\sigma: \hat{G} \rightarrow \hat{G}$ where $(\hat{G})^{\sigma}=G$. By definition, $G_{\geq 0}=\left(\hat{G}_{\geq 0}\right)^{\sigma}=\left(\hat{G}_{\geq 0}\right) \cap \hat{G}^{\sigma}=\left(\hat{G}_{\geq 0}\right) \cap G$ is closed in G.

The next lemma shows the cellular decomposition of cells.
Lemma 6.7. Let W be the Weyl group, \leq be the Bruhat order on the Weyl Group and $w \in W$. Then,

$$
\overline{U_{w,>0}^{-}}=\bigsqcup_{w^{\prime} \leq w} U_{w^{\prime},>0}^{-}
$$

Proof. First, we shall show $\overline{U_{w,>0}^{-}} \supseteq \bigsqcup_{w^{\prime} \leq w} U_{w^{\prime},>0}^{-}$. Let, $c_{1} c_{2} \ldots c_{k}$ be a reduced expression for w. Then, there exists an expression of any element $w^{\prime} \leq w$ as $c_{d_{1}} c_{d_{2}} \ldots c_{d_{r}}$ where $1 \leq d_{1}<d_{2}<\ldots<d_{r} \leq k$. Thus, as $\lim _{a_{k} \rightarrow 0} y_{k}\left(a_{k}\right)=1$, we can consider the set $\left\{\lim _{a_{j} \rightarrow 0 \forall j \in J} \prod_{i} y_{i}\left(a_{i}\right)\right\}$ where $J=\{1,2, \ldots, k\} \backslash$ $\left\{d_{1}, d_{2}, \ldots, d_{r}\right\}$.
Conversely, we have

$$
\begin{align*}
\overline{U_{w,>0}^{-}} & \subseteq \overline{B^{+} w B^{+}} \tag{5}\\
& =\bigsqcup_{w^{\prime} \leq w} B^{+} w^{\prime} B^{+} \tag{6}
\end{align*}
$$

and as $U^{-} \geq 0$ is closed in U^{-}and thus closed in G,

$$
\begin{align*}
\overline{U_{w,>0}^{-}} & \subseteq \bigsqcup_{w^{\prime} \leq w}\left(B^{+} w^{\prime} B^{+} \cap U_{\geq 0}^{-}\right) \tag{7}\\
& =\bigsqcup_{w^{\prime} \leq w} U_{w^{\prime},>0}^{-} \tag{8}
\end{align*}
$$

Finally, we shall see that this are indeed "cells".
Theorem 6.8. Let W be the Weyl group and $w \in W$. Then, we have the homeomorphism $U_{w,>0}^{-} \cong$ $\left(\mathbb{R}_{\geq 0}\right)^{\ell(w)}$.

Proof. We rely on the Invariance of Domain: let U is an open set in \mathbb{R}^{n} and $f: U \rightarrow R^{n}$ be a continuous injective map, then $f(U)$ is open and f give us an homeomorphism between U and its image $f(U)$.
Consider the following map

$$
f:\left(\mathbb{R}_{\geq 0}\right)^{\ell(w)} \times\left(\mathbb{R}_{\geq 0}\right)^{N-\ell(w)} \rightarrow U_{w,>0}^{-} \times U_{w^{-1} w_{0},>0}^{-} \cong U_{w_{0},>0}^{-} \cong U_{>0}^{-}
$$

by sending $\left(a_{1}, a_{2}, \ldots, a_{\ell(w)}\right) \times\left(a_{\ell(w)+1}, \ldots, a_{N}\right)$ to $\prod_{i=1}^{\ell(w)} y_{i}\left(a_{i}\right) \times \prod_{i=\ell(w)+1}^{N} y_{i}\left(a_{i}\right)$. Here, $c_{1} c_{2} \ldots c_{\ell(w)}$ is a reduced expression for w and $c_{1} c_{2} \ldots c_{N}$ is a reduced expression for w_{0}, the longest element.
When, $w=e$, this is a continuous injective map, and thus by Invariance of Domain, shows the case where $w=w_{0}$. This in turns shows the general case, as f is then an homeomorphism between the domain and the image, and thus, the components of the products are also homeomorphisms.

