MATH6032 - Topics in Algebra II - 2021/22

Total positivity - Lecture 11

Lecturer: Prof.Xuhua He
Institute: The Chinese University of Hong Kong
Date: 2022/3/30

Today we discuss the total positivity on flag manifolds.
Assume that G is a reductive group. Fix a pinning $\left(G, B^{+}, B^{-}, T=B^{+} \cap B^{-}, x_{i}, y_{i}\right)$. Let $G_{\geq 0}=$ $\left\langle x_{i}(a), y_{i}(a), t_{i}(a)\right\rangle_{i \in I, a>0}$ be the totally nonnegative submonoid of G. We have the decomposition into cells

$$
G_{\geq 0}=\coprod_{w_{1}, w_{2} \in W} G_{w_{1}, w_{2},>0}
$$

where

$$
G_{w_{1}, w_{2},>0} \cong \mathbb{R}_{>0}^{l\left(w_{1}\right)+l\left(w_{2}\right)+\operatorname{rank} G}
$$

and the closure relation

$$
\overline{G_{w_{1}, w_{2},>0}}=\coprod_{w_{1}^{\prime} \leq w_{1}, w_{2}^{\prime} \leq w_{2}} G_{w_{1}^{\prime}, w_{2}^{\prime},>0}
$$

Let $\mathcal{B}=G / B^{+}$be the (full) flag variety. And $\mathcal{P}_{K}=G / P_{K}^{+}$be the notation for the partial flag variety.

Definition 1

The totally positive flags are

$$
\mathcal{B}_{>0}=U_{>0}^{-} \cdot B^{+}
$$

and the totally nonegative flags $\mathcal{B}_{\geq 0}$ are the closure of $\mathcal{B}_{>0}$.

In general, if G is a Kac-moody group, then $U_{>0}$ does not make sense. $\mathcal{B}_{\geq 0}$ is defined to be the closure of $U_{\geq 0}^{-} \cdot B^{+}$in \mathcal{B}.

Note that in a reductive group $G, U_{\geq 0}^{-}$is the closure of $U_{>0}^{-}$. So $U_{\geq 0}^{-} \cdot B^{+}$is contained in the closure of $U_{>0}^{-} \cdot B^{+}$. So when G is a reductive group, the two definitions of $\mathcal{B} \geq 0$ coincide.

More on Kac-Moody groups
If G is a reductive group, the Weyl group W has a longest element w_{0} and $U_{>0}^{-}$is defined to be $U_{w_{0},>0}^{-}$. In general, W is an infinite group and there is no longest element. So $U_{>0}^{-}$can not be defined. Another way is to use representation theory (for simply laced group via canonical basis).

Let G be a reductive group, V_{λ} be a highest weight representation, and $v_{\lambda} \in \beta$ be the canonical basis. For $u \in U^{-}$, write $u \cdot v_{\lambda}=\sum_{b \in \beta} c_{b} \in V_{\lambda}$. Here $c_{b} \in \mathbb{C}$.
Fact $u \in U_{>0}^{-} \Leftrightarrow c_{b}>0, \forall b \in \beta$.
However, if G is a Kac-Moody group, $u \in U_{\geq 0}^{-}$, then there are only finitely many $b \in \beta$, s.t.c $c_{b} \neq 0$, as u is a finite product of $y_{i}(>0)$. In particular, one never reach the lowest weight vector.
Example 1 Let $G=\mathrm{GL}_{2}, \mathcal{B}=G / B^{+} \cong \mathbb{P}^{1}$. B^{+}corresponds to the point $[1: 0] \in \mathbb{P}^{1}$. So

$$
y_{i}(a) \cdot B^{+}=\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right) \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
a
\end{array}\right]
$$

$\mathcal{B}_{>0}=\{[1: a], 0<a<\infty\}$ is an open half circle in $\mathbb{R P}^{1}$ and $\mathcal{B}_{\geq 0}=\{[1: a], 0 \leq a \leq \infty\}$ is the closed half circle.

And a cell decomposition is given

$$
\begin{gathered}
\mathcal{B}_{>0}=\mathbb{R}_{>0} \\
\mathcal{B}_{\geq 0}=\mathbb{R}_{>0} \coprod\{0\} \coprod\{\infty\}
\end{gathered}
$$

Also $x_{i}(a) \cdot B^{-}=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right) \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}a \\ 1\end{array}\right]$. Hence we have a duality $U_{>0}^{-} \cdot B^{+}=u_{>0}^{+} \cdot B^{-}$.
General theory
Let G be a Kac-Moody group. Recall that we have the Bruhat decomposition

$$
G=\coprod_{w \in W} B^{+} w B^{+}
$$

Then $\mathcal{B}=\coprod_{w \in W} \mathcal{B}_{w}^{\circ}$ where $\stackrel{\mathcal{B}}{w}^{\circ}=B^{+} w B^{+} / B^{+}$is a schubert cell. And schubert variety $\mathcal{B}_{w}:=$ Zaraski closure of \mathcal{B}_{w}.
we have $\mathcal{B}_{w}=\coprod_{w^{\prime} \leq w} \mathcal{B}_{w^{\prime}}^{\circ}$.
In particular $\mathcal{B}=\coprod_{w \in W} \dot{\mathcal{B}_{w}}$ is a cellular decomposition of \mathcal{B} and $\mathcal{B}_{w}^{\circ} \cong \mathbb{C}^{l(w)}$.
Back to $G=\mathrm{GL}_{2}$ case, $W=S_{2}=\{1, s\} . \dot{\mathcal{B}}_{s} \simeq \mathbb{C} . \dot{\mathcal{B}}_{1} \simeq \mathrm{pt}$.
Also $\mathcal{B}=\coprod_{u \in W} \dot{\mathcal{B}}^{u}$ where $\dot{\mathcal{B}}^{u}=B^{-} u B^{+} / B^{+}$is of codimension $l(u)$. Let \mathcal{B}^{u} be the Zaraski closure of \mathcal{B}^{u}. We have the Birkhoff decomposition $\mathcal{B}^{u}=\coprod_{u^{\prime} \geq u} \mathcal{B}^{\circ} u^{\prime}$.
Remark In the special case when G is a reductive group. We have $B^{-}=\dot{w}_{0} B^{+} \dot{w}_{0}^{-1}=\dot{w_{0}} B^{+} \dot{w_{0}}$, so $\dot{\mathcal{B}}^{u}=B^{-} u B^{+} / B^{+}=\dot{w}_{0} B^{+} \dot{w}_{0} u B^{+} / B^{+}=\dot{w_{0}} \mathcal{B}_{w_{0} u}^{\circ}$.

Here $\operatorname{dim} \mathcal{B}=l\left(w_{0}\right), \operatorname{dim} \mathcal{B}_{w_{0} u}^{\circ}=l\left(w_{0}\right)-l(u)$. So \mathcal{B}^{u} is of $\operatorname{codim} l(u)$.
$u^{\prime} \geq u \Leftrightarrow w_{0} u^{\prime} \leq w_{0} u$ implies that the closure relation on \mathcal{B}° and $\mathcal{B}_{w_{0} u}^{\circ}$ are decided by each other.

Definition 2

The open Richardson variety

$$
\mathcal{B}_{u, w}^{\circ}=\stackrel{\circ}{\mathcal{B}}^{u} \cap \stackrel{\circ}{\mathcal{B}}_{w}
$$

And the closed Richardson variety

$$
\mathcal{B}_{u, w}=\mathcal{B}^{u} \cap \mathcal{B}_{w}
$$

Remarlk In the cohomology ring $H^{*}(B)$, we have the basis given by $\left[\mathcal{B}^{w_{0} w}\right]=\left[\mathcal{B}_{w}\right]$. And the multiplication is given by

$$
\left[\mathcal{B}^{u}\right] \cup\left[\mathcal{B}_{w}\right]=\left[\mathcal{B}_{u, w}\right] .
$$

Here the key feature of Richardson variety is that it is the intersection of B^{+}-orbits with B^{-}-orbits. (and $\left.\operatorname{Lie}\left(B^{+}\right)+\operatorname{Lie}\left(B^{-}\right)=\operatorname{Lie}(G)\right)$ and such intersection is a transversal intersection

Proposition 1

Let $u, w \in W$. The following are equivalent: (1) $\mathcal{B}_{u, w}^{\circ} \neq \varnothing$; (2) $\mathcal{B}_{u, w} \neq \varnothing$; (3) $u \leqslant w$.

Proof $(1) \Rightarrow(2)$: Obvious since $\mathcal{B}_{u, w} \supset \mathcal{B}_{u, w}^{\circ}$.
$(2) \Rightarrow(3): \mathcal{B}_{u, w}$ is closed in \mathbb{B} as \mathcal{B}^{u} and \mathcal{B}_{w} is closed. Also $\mathcal{B}_{u, w}$ is stable under the action of T as \mathcal{B}^{u} and \mathcal{B}_{w} is. If $\mathcal{B}_{u, w} \neq \varnothing$, then it contains a T-fixed point (limit of T^{∞} of a point). The T-fixed point in \mathcal{B} are $\left\{v \cdot B^{+} ; w \in W\right\} /($ This can be proved from Bruhat decomposition).
[Passing to T-fixed point is a common trick in geometric representation theory as T-fixed points are often discrete and admit combinatorial description].

Suppose $v \cdot B^{+} \in \mathcal{B}_{u, w}^{\circ}$ is a fixed point. Then $v \cdot B^{+} \in \mathcal{B}_{w}$ so $\dot{\mathcal{B}}_{v}=B^{+} v \cdot B^{+} / B^{+} \subseteq \mathcal{B}_{w}$ and $v \leq w$.
Also $v \cdot B^{+} \in \mathcal{B}^{u}$, so $\mathcal{B}^{v}=B^{-} v \cdot B^{+} / B^{+} \subseteq \mathcal{B}^{u}$ and $v \geq w$. Therefore, $u \leq v \leq w$ and $u \leq w$.
$(3) \Rightarrow(1)$: There is a simple proof by studying the root subgroups, e.g.Kumar's book[2]. We won't follow this proof. Instead, we will give a structural description of $\mathcal{B}_{u, w}^{\circ}$ when $u \leq w$. We will follow [1] and [3].

Before that, we come back to the $G=\mathrm{GL}_{2}$ case. Here $W=S_{2},\{(v, w) ; v \leq w\}=\{(1, s),(1,1),(s, s)\}$.

$$
\begin{gathered}
\check{\mathcal{B}}_{1,1}=\check{\mathcal{B}}^{1} \cap \check{\mathcal{B}}_{1}=B^{+}=[1: 0] \in \mathbb{P}^{1} \\
\grave{\mathcal{B}}_{s, s}=\grave{\mathcal{B}}^{s} \cap \check{\mathcal{B}}_{s}=s B^{+}=[0: 1] \in \mathbb{P}^{1} \\
\grave{\mathcal{B}}_{1, s}=\dot{\mathcal{B}}^{1} \cap \grave{\mathcal{B}}_{s}=U^{-} \cdot B^{+} \cap B^{+} s B^{+}=\left\{y(a) \cdot B^{+}: a \neq 0\right\}
\end{gathered}
$$

Deodhar decomposition

Let $\underline{w}=s_{i_{1}} \cdots s_{i_{n}}$ be a reduced expression for w. Then $u \leq w \Leftrightarrow \exists$ a subexpression $\underline{u}=t_{i_{1}} \cdots t_{i_{n}}$, where $t_{i} \in\left\{1, s_{i}\right\}$. But this subexpression is not unique in general.

Deodhar's idea: Fix a reduced expression: $\underline{w}=s_{i_{1}} \cdots s_{i_{n}}$, for any point in $\stackrel{\mathcal{B}}{u, w}$ we obtain a certain subexpression for u. This leads to a decomposition of $\dot{\mathcal{B}}_{u, w}$.

Recall we have an isomorphism (case $u=1$)

$$
\begin{aligned}
& y_{i_{1}}(\mathbb{R}) \times \cdots \times y_{i_{n}}(\mathbb{R}) \longrightarrow \dot{\mathcal{B}}_{1, w}(\mathbb{R}) \\
& \left(y_{1}\left(a_{1}\right), \cdots, y_{i_{n}}\left(a_{n}\right)\right) \longrightarrow p
\end{aligned}
$$

Here, from the point p, we not only get the element $(1, w)$, but we get the sequence $\left(a_{1}, \cdots, a_{n}\right)$. This is not the Deodhar's construction, but it illustrates the idea.

Consider $\mathcal{B} \times \mathcal{B}$ with the diagonal action of G. Then we have

$$
G \backslash\left(G / B^{+} \times G / B^{+}\right) \longleftrightarrow B^{+} \backslash G / B^{+} \longleftrightarrow W
$$

Definition 3 (Relative position (a reformulation of the Bruhat decomposition))

We write $B_{1} \xrightarrow{w} B_{2}$ if $\left(B_{1}, B_{2}\right)$ is in the G-orbit of $\left(B^{+}, w \cdot B^{+}\right)$. $\left(B_{1}, B_{2}\right)$ is in a relative position w.r.t w.

If $w=v v^{\prime}$ with $l(w)=l(v)+l\left(v^{\prime}\right)$ then we have an isomorphism.

$$
B^{+} v B^{+} \times^{B^{+}} B^{+} v^{\iota} B^{+} \cong B^{+} w B^{+}
$$

In other words, for any B_{1}, B_{2} with $B_{1} \xrightarrow{w} B_{2}$, ヨ! B_{3}, s.t. $B_{1} \xrightarrow{v} B_{3} \xrightarrow{v^{\prime}} B_{2}$.
Particularly, $B \in \stackrel{\mathfrak{\mathcal { B }}}{w}$, where we have $B^{+} \xrightarrow{w} B$.

Definition 4 (Reduction map)

We set $\pi_{v}^{w}(B)$ be the unique element with $B^{+} \xrightarrow{v} \pi_{v}^{w}(B) \xrightarrow{v^{\prime}} B . \pi_{v}^{w}$ is called the reduction map.
Now let $\underline{w}=s_{i_{1}} \cdots s_{i_{n}}$, set $\underline{w}_{(k)}=s_{i_{1}} \cdots s_{i_{k}}$. For any subexpression $\underline{v}=t_{i_{1}} \cdots t_{i_{n}}$, set $\underline{v}_{(k)}=t_{i_{1}} \cdots t_{i_{k}}$.

Definition 5 (Deodhar Component)

$$
\check{\mathcal{B}}_{\underline{v}, \underline{w}}=\left\{B \in \check{\mathcal{B}}_{v, w} ; \pi_{w_{(k)}}^{w}(B) \in B^{-} v_{(k)} \cdot B^{+} \quad \forall k\right\}
$$

By definition, for any fixed reduced expression \underline{w}.

$$
\stackrel{\circ}{\mathcal{B}}_{v, w}=\coprod_{\underline{v} \text { subexpression of } v \text { in } \underline{w}} \stackrel{\circ}{\mathcal{B}}_{\underline{v}, \underline{w}}
$$

This is called Deodhar decomposition.
Remark Deodhar's motivation is a geometric interpretation of Kazhdan-Lusztig's R-polynomial, i.e.

$$
R_{u, w}(q)=\# \dot{\mathcal{B}}_{v, w}\left(\mathbb{F}_{q}\right)=\sum_{\text {Deodhar decomposition }}(q-1)^{*} q^{* *}
$$

* means to some power. From the following theorem you will see that the above formula holds for abitrary field K and so $*=J_{\underline{u}}^{0}$ and $* *=J_{\underline{u}}^{-}$.

Theorem 1 (Deodhar)

(1) $\dot{\mathcal{B}}_{\underline{v}, \underline{w}} \neq \varnothing$ iff \underline{u} is a distinguished expression of \underline{w}.
(2) If \underline{u} is a distinguished subexpression of \underline{w}, then $\stackrel{\circ}{\mathcal{B}}_{\underline{v}, \underline{w}} \simeq\left(K^{\times}\right)^{\# J_{\underline{u}}^{0}} \times K^{\# J_{\underline{u}}^{-}}$, where $J_{\underline{u}}^{0}$, $J_{\underline{u}}^{-}$are certain subsets of $\{1,2, \cdots, n\}$

Theorem 2 (Marsh-Rietsch)

(1) $\dot{\mathcal{B}}_{\underline{v}, \underline{w}} \cap \mathcal{B}_{\geq 0} \neq \varnothing$ iff \underline{u} is a positive subexpression of \underline{w}.
(2)If \underline{u} is a positive subexpresion of \underline{w}, then

$$
\dot{\mathcal{B}}_{\underline{v}, \underline{w}} \cap \mathcal{B}_{\geq 0} \cong\left(\mathbb{R}_{>0}\right)^{l(w)-l(u)}
$$

as cells. $\left(\left|J_{\underline{u}}^{\bigcirc}\right|=l(w)-l(u).\right)$

We will define distinguished expression and positive subexpression as follows

Definition 6

Set $J_{\underline{v}}^{+/ 0 /-}=\left\{k: v_{(k-1)}</=/>v_{(k)}\right\}$.
We say that \underline{v} is distinguished in \underline{w} if

$$
v_{(k)} \leq v_{(k-1)} s_{i_{k}}, \forall k
$$

i.e., if $v_{(k-1)} \cdot s_{i_{k}}<v_{(k-1)}$ then $t_{i_{k}}=s_{i_{k}}$. (When it may go down, it will go down).

We say that \underline{v} is positive in \underline{w} if

$$
v_{(k-1)}<v_{(k-1)} s_{i_{k}}, \forall k
$$

(it is distinguished, and never goes down, as $\left.v_{(k)} \in\left\{v_{(k-1)}, v_{(k-1)} s_{i_{k}}\right\} \geq v_{(k-1)}\right)$.

Example $2 G=\mathrm{GL}_{4}, W=S_{4}=<(12),(23),(34)>=<s_{1}, s_{2}, s_{3}>$.

$$
w=w_{0}=s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}, v=s_{2} s_{3}
$$

The subexpressions of v are

1. $1111 s_{2} s_{3}$
2. $1 s_{2} 111 s_{3}$
3. $1 s_{2} 1 s_{3} 11$
4. $s_{3} s_{2} 1 s_{3} s_{2} 1$

Then 1. is distinguished and positive, 2.,3.\&4. are not distinguished.

Bibliography

[1] Vinay V Deodhar. "On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells". In: Inventiones mathematicae 79.3 (1985), pp. 499-511.
[2] Shrawan Kumar. Kac-Moody groups, their flag varieties and representation theory. Vol. 204. Springer Science \& Business Media, 2012.
[3] R Marsh and Konstanze Rietsch. "Parametrizations of flag varieties". In: Representation Theory of the American Mathematical Society 8.9 (2004), pp. 212-242.

