

MATH6032 - Topics in Algebra II - 2021/22

Total positivity - Lecture 11

Lecturer: Prof.Xuhua He Institute: The Chinese University of Hong Kong Date: 2022/3/30

Today we discuss the total positivity on flag manifolds.

Assume that G is a reductive group. Fix a pinning $(G, B^+, B^-, T = B^+ \cap B^-, x_i, y_i)$. Let $G_{\geq 0} = \langle x_i(a), y_i(a), t_i(a) \rangle_{i \in I, a > 0}$ be the totally nonnegative submonoid of G. We have the decomposition into cells

$$G_{\geq 0} = \coprod_{w_1, w_2 \in W} G_{w_1, w_2, > 0}$$

where

$$G_{w_1,w_2,>0} \cong \mathbb{R}^{l(w_1)+l(w_2)+\operatorname{rank} G}_{>0}$$

and the closure relation

$$\overline{G_{w_1,w_2,>0}} = \coprod_{w_1' \le w_1, w_2' \le w_2} G_{w_1',w_2',>0}$$

Let $\mathcal{B} = G/B^+$ be the (full) flag variety. And $\mathcal{P}_K = G/P_K^+$ be the notation for the partial flag variety.

Definition 1

The totally positive flags are

$$\mathcal{B}_{>0} = U_{>0}^- \cdot B^+$$

and the totally nonegative flags $\mathcal{B}_{>0}$ are the closure of $\mathcal{B}_{>0}$.

In general, if G is a Kac-moody group, then $U_{>0}$ does not make sense. $\mathcal{B}_{\geq 0}$ is defined to be the closure of $U_{>0}^- \cdot B^+$ in \mathcal{B} .

Note that in a reductive group G, $U_{\geq 0}^-$ is the closure of $U_{>0}^-$. So $U_{\geq 0}^- \cdot B^+$ is contained in the closure of $U_{>0}^- \cdot B^+$. So when G is a reductive group, the two definitions of $\mathcal{B}_{\geq 0}$ coincide.

More on Kac-Moody groups

If G is a reductive group, the Weyl group W has a longest element w_0 and $U_{>0}^-$ is defined to be $U_{w_0,>0}^-$. In general, W is an infinite group and there is no longest element. So $U_{>0}^-$ can not be defined. Another way is to use representation theory (for simply laced group via canonical basis).

Let G be a reductive group, V_{λ} be a highest weight representation, and $v_{\lambda} \in \beta$ be the canonical basis. For $u \in U^-$, write $u \cdot v_{\lambda} = \sum_{b \in \beta} c_b \in V_{\lambda}$. Here $c_b \in \mathbb{C}$. Fact $u \in U_{>0}^- \Leftrightarrow c_b > 0, \forall b \in \beta$.

However, if G is a Kac-Moody group, $u \in U_{\geq 0}^-$, then there are only finitely many $b \in \beta$, $s.t.c_b \neq 0$, as u is a finite product of $y_i (> 0)$. In particular, one never reach the lowest weight vector.

Example 1 Let $G = GL_2, \mathcal{B} = G/B^+ \cong \mathbb{P}^1$. B^+ corresponds to the point $[1:0] \in \mathbb{P}^1$. So

$$y_i(a) \cdot B^+ = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ a \end{bmatrix}$$

 $\mathcal{B}_{>0} = \{[1:a], 0 < a < \infty\}$ is an open half circle in \mathbb{RP}^1 and $\mathcal{B}_{\geq 0} = \{[1:a], 0 \leq a \leq \infty\}$ is the closed half circle.

And a cell decomposition is given

$$\mathcal{B}_{>0} = \mathbb{R}_{>0}$$
$$\mathcal{B}_{\geq 0} = \mathbb{R}_{>0} \coprod \{0\} \coprod \{\infty\}$$

Also
$$x_i(a) \cdot B^- = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ 1 \end{bmatrix}$$
. Hence we have a duality $U_{>0}^- \cdot B^+ = u_{>0}^+ \cdot B^-$.
General theory

Let G be a Kac-Moody group. Recall that we have the Bruhat decomposition

$$G = \coprod_{w \in W} B^+ w B^+$$

Then $\mathcal{B} = \prod_{w \in W} \mathring{\mathcal{B}}_w$ where $\mathring{\mathcal{B}}_w = B^+ w B^+ / B^+$ is a schubert cell. And schubert variety $\mathcal{B}_w :=$ Zaraski closure of \mathcal{B}_w .

we have $\mathcal{B}_w = \coprod_{w' < w} \mathcal{B}_{w'}$.

In particular $\mathcal{B} = \coprod_{w \in W} \mathcal{B}_w$ is a cellular decomposition of \mathcal{B} and $\mathcal{B}_w \cong \mathbb{C}^{l(w)}$.

Back to $G = \operatorname{GL}_2$ case, $W = S_2 = \{1, s\}$. $\mathring{\mathcal{B}}_s \simeq \mathbb{C}$. $\mathring{\mathcal{B}}_1 \simeq \operatorname{pt}$.

Also $\mathcal{B} = \prod_{u \in W} \mathring{\mathcal{B}}^u$ where $\mathring{\mathcal{B}}^u = B^- u B^+ / B^+$ is of codimension l(u). Let \mathcal{B}^u be the Zaraski closure of $\mathring{\mathcal{B}}^{u}$. We have the **Birkhoff decomposition** $\mathcal{B}^{u} = \coprod_{u' > u} \mathring{\mathcal{B}}^{u'}$.

Remark In the special case when G is a reductive group. We have $B^- = \dot{w_0}B^+\dot{w_0}^{-1} = \dot{w_0}B^+\dot{w_0}$, so $\ddot{\mathcal{B}}^{u} = B^{-}uB^{+}/B^{+} = \dot{w_{0}}B^{+}\dot{w_{0}}uB^{+}/B^{+} = \dot{w_{0}}\mathcal{B}^{'}_{w_{0}u}.$

Here dim $\mathcal{B} = l(w_0)$, dim $\mathcal{B}_{w_0 u} = l(w_0) - l(u)$. So \mathcal{B}^u is of codim l(u).

 $u' \ge u \Leftrightarrow w_0 u' \le w_0 u$ implies that the closure relation on $\mathring{\mathcal{B}}^u$ and $\mathring{\mathcal{B}}_{w_0 u}$ are decided by each other.

Definition 2

The open Richardson variety

$$\mathring{\mathcal{B}_{u,w}}=\mathring{\mathcal{B}^{u}}\cap \mathring{\mathcal{B}_{w}}$$

And the closed Richardson variety

$$\mathcal{B}_{u,w} = \mathcal{B}^u \cap \mathcal{B}_w$$

Remark In the cohomology ring $H^*(B)$, we have the basis given by $[\mathcal{B}^{w_0w}] = [\mathcal{B}_w]$. And the multiplication is given by

$$[\mathcal{B}^u] \cup [\mathcal{B}_w] = [\mathcal{B}_{u,w}].$$

Here the key feature of Richardson variety is that it is the intersection of B^+ -orbits with B^- -orbits. (and $\operatorname{Lie}(B^+) + \operatorname{Lie}(B^-) = \operatorname{Lie}(G)$ and such intersection is a transversal intersection

Proposition 1

Let $u, w \in W$. The following are equivalent: (1) $\mathcal{B}_{u,w}^{\circ} \neq \emptyset$; (2) $\mathcal{B}_{u,w} \neq \emptyset$; (3) $u \leq w$.

Proof (1) \Rightarrow (2): Obvious since $\mathcal{B}_{u,w} \supset \mathcal{B}_{u,w}^{\circ}$.

 $(2) \Rightarrow (3): \mathcal{B}_{u,w}$ is closed in \mathbb{B} as \mathcal{B}^u and \mathcal{B}_w is closed. Also $\mathcal{B}_{u,w}$ is stable under the action of T as \mathcal{B}^u and \mathcal{B}_w is. If $\mathcal{B}_{u,w} \neq \emptyset$, then it contains a T-fixed point (limit of T^{∞} of a point). The T-fixed point in \mathcal{B} are $\{v \cdot B^+; w \in W\}/($ This can be proved from Bruhat decomposition).

[Passing to T-fixed point is a common trick in geometric representation theory as T-fixed points are often discrete and admit combinatorial description].

Suppose $v \cdot B^+ \in \mathcal{B}_{u,w}^{\circ}$ is a fixed point. Then $v \cdot B^+ \in \mathcal{B}_w$ so $\mathcal{B}_v = B^+ v \cdot B^+ / B^+ \subseteq \mathcal{B}_w$ and $v \leq w$. Also $v \cdot B^+ \in \mathcal{B}^u$, so $\mathring{\mathcal{B}^v} = B^- v \cdot B^+ / B^+ \subseteq \mathcal{B}^u$ and $v \ge w$. Therefore, $u \le v \le w$ and $u \le w$.

 $(3) \Rightarrow (1)$: There is a simple proof by studying the root subgroups, e.g.Kumar's book[2]. We won't follow this proof. Instead, we will give a structural description of $\mathcal{B}_{u,w}$ when $u \leq w$. We will follow [1] and [3].

Before that, we come back to the $G = GL_2$ case. Here $W = S_2$, $\{(v, w); v \le w\} = \{(1, s), (1, 1), (s, s)\}$.

$$\ddot{\mathcal{B}}_{1,1} = \ddot{\mathcal{B}}^1 \cap \ddot{\mathcal{B}}_1 = B^+ = [1:0] \in \mathbb{P}^1$$

$$\ddot{\mathcal{B}}_{s,s} = \ddot{\mathcal{B}}^s \cap \ddot{\mathcal{B}}_s = sB^+ = [0:1] \in \mathbb{P}^1$$

$$\ddot{\mathcal{B}}_{1,s} = \ddot{\mathcal{B}}^1 \cap \ddot{\mathcal{B}}_s = U^- \cdot B^+ \cap B^+ sB^+ = \{y(a) \cdot B^+ : a \neq 0\}$$

Deodhar decomposition

Let $\underline{w} = s_{i_1} \cdots s_{i_n}$ be a reduced expression for w. Then $u \leq w \Leftrightarrow \exists$ a subexpression $\underline{u} = t_{i_1} \cdots t_{i_n}$, where $t_i \in \{1, s_i\}$. But this subexpression is not unique in general.

Deodhar's idea: Fix a reduced expression: $\underline{w} = s_{i_1} \cdots s_{i_n}$, for any point in $\hat{\mathcal{B}}_{u,w}$ we obtain a certain subexpression for u. This leads to a decomposition of $\mathring{\mathcal{B}}_{u,w}$.

Recall we have an isomorphism (case u = 1)

$$y_{i_1}(\mathbb{R}) \times \cdots \times y_{i_n}(\mathbb{R}) \longrightarrow \check{\mathcal{B}}_{1,w}(\mathbb{R})$$

 $(y_1(a_1), \cdots, y_{i_n}(a_n)) \longrightarrow p$

Here, from the point p, we not only get the element (1, w), but we get the sequence (a_1, \dots, a_n) . This is not the Deodhar's construction, but it illustrates the idea.

Consider $\mathcal{B} \times \mathcal{B}$ with the diagonal action of G. Then we have

$$G \setminus (G/B^+ \times G/B^+) \longleftrightarrow B^+ \setminus G/B^+ \longleftrightarrow W.$$

Definition 3 (Relative position (a reformulation of the Bruhat decomposition))

We write $B_1 \xrightarrow{w} B_2$ if (B_1, B_2) is in the G-orbit of $(B^+, w \cdot B^+)$. (B_1, B_2) is in a relative position w.r.t w.

If w = vv' with l(w) = l(v) + l(v') then we have an isomorphism.

$$B^+vB^+ \times^{B^+} B^+v`B^+ \cong B^+wB^+$$

In other words, for any B_1, B_2 with $B_1 \xrightarrow{w} B_2, \exists !B_3, s.t.B_1 \xrightarrow{v} B_3 \xrightarrow{v'} B_2$. Particularly, $B \in \mathring{\mathcal{B}}_w$, where we have $B^+ \xrightarrow{w} B$.

Definition 4 (Reduction map)

We set $\pi_v^w(B)$ be the unique element with $B^+ \xrightarrow{v} \pi_v^w(B) \xrightarrow{v'} B$. π_v^w is called the reduction map.

Now let $\underline{w} = s_{i_1} \cdots s_{i_n}$, set $\underline{w}_{(k)} = s_{i_1} \cdots s_{i_k}$. For any subexpression $\underline{v} = t_{i_1} \cdots t_{i_n}$, set $\underline{v}_{(k)} = t_{i_1} \cdots t_{i_k}$.

*

Definition 5 (Deodhar Component)

$$\mathring{\mathcal{B}}_{\underline{v},\underline{w}} = \left\{ B \in \mathring{\mathcal{B}}_{v,w}; \pi^w_{w(k)}(B) \in B^- v_{(k)} \cdot B^+ \quad \forall k \right\}$$

By definition, for any fixed reduced expression \underline{w} .

$$\mathring{\mathcal{B}}_{v,w} = \coprod_{v \text{ subexpression of } v \text{ in } w} \mathring{\mathcal{B}}_{\underline{v},\underline{u}}$$

This is called Deodhar decomposition.

Remark Deodhar's motivation is a geometric interpretation of Kazhdan-Lusztig's R-polynomial, i.e.

$$R_{u,w}(q) = \# \mathring{\mathcal{B}}_{v,w}\left(\mathbb{F}_q\right) = \sum_{\text{Deodhar decomposition}} (q-1)^* q^{**}$$

* means to some power. From the following theorem you will see that the above formula holds for abitrary field K and so $* = J_{\underline{u}}^{0}$ and $** = J_{\underline{u}}^{-}$.

Theorem 1 (Deodhar)

(1) $\mathring{\mathcal{B}}_{\underline{v},\underline{w}} \neq \emptyset$ iff \underline{u} is a distinguished expression of \underline{w} . (2) If \underline{u} is a distinguished subexpression of \underline{w} , then $\mathring{\mathcal{B}}_{\underline{v},\underline{w}} \simeq (K^{\times})^{\#J_{\underline{u}}^{0}} \times K^{\#J_{\underline{u}}^{-}}$, where $J_{\underline{u}}^{0}, J_{\underline{u}}^{-}$ are certain subsets of $\{1, 2, \cdots, n\}$

Theorem 2 (Marsh-Rietsch)

(1) $\mathcal{B}_{\underline{v},\underline{w}} \cap \mathcal{B}_{\geq 0} \neq \emptyset$ iff \underline{u} is a positive subexpression of \underline{w} . (2)If \underline{u} is a positive subexpression of \underline{w} , then

$$\mathring{\mathcal{B}}_{v,w} \cap \mathcal{B}_{>0} \cong (\mathbb{R}_{>0})^{l(w)-l(u)}$$

as cells. ($|J_u^{\circ}| = l(w) - l(u)$.)

We will define distinguished expression and positive subexpression as follows

Definition 6

Set $J_{\underline{v}}^{+/0/-} = \{k : v_{(k-1)} < / = / > v_{(k)}\}.$ We say that \underline{v} is distinguished in \underline{w} if

$$v_{(k)} \le v_{(k-1)} s_{i_k}, \forall k$$

i.e., if $v_{(k-1)} \cdot s_{i_k} < v_{(k-1)}$ *then* $t_{i_k} = s_{i_k}$. (When it may go down, it will go down). We say that \underline{v} is **positive** in \underline{w} if

$$v_{(k-1)} < v_{(k-1)} s_{i_k}, \forall k$$

2

(it is distinguished, and never goes down, as $v_{(k)} \in \{v_{(k-1)}, v_{(k-1)}s_{i_k}\} \ge v_{(k-1)}$).

Example 2 $G = GL_4, W = S_4 = \langle (12), (23), (34) \rangle = \langle s_1, s_2, s_3 \rangle$.

$$w = w_0 = s_3 s_2 s_1 s_3 s_2 s_3, v = s_2 s_3$$

The subexpressions of v are

- 1. $1111s_2s_3$
- 2. $1s_2111s_3$
- 3. $1s_21s_311$
- 4. $s_3s_21s_3s_21$

Then 1. is distinguished and positive, 2., 3. & 4. are not distinguished.

Bibliography

- [1] Vinay V Deodhar. "On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells". In: *Inventiones mathematicae* 79.3 (1985), pp. 499–511.
- [2] Shrawan Kumar. *Kac-Moody groups, their flag varieties and representation theory*. Vol. 204. Springer Science & Business Media, 2012.
- [3] R Marsh and Konstanze Rietsch. "Parametrizations of flag varieties". In: *Representation Theory of the American Mathematical Society* 8.9 (2004), pp. 212–242.