MATH6032 - Topics in Algebra II - 2021/22

Total positivity - Lecture 10

Lecturer: Prof.Xuhua He
Institute: The Chinese University of Hong Kong
Date: 2022/3/23

Previously, we consider $K=\mathbb{R}_{>0}$, a semifield. We have

Lemma 0.1

Let $K=\mathbb{R}_{>0}$. For any $w_{1}, w_{2} \in W$ with $\operatorname{supp}\left(w_{1}\right)=\operatorname{supp}\left(w_{2}\right)=I$, and $g \in$ $U_{w_{1}}^{+}(K) T(K) U_{w_{2}}^{-}(K), \quad \exists u_{1} \in U_{w_{0}}^{-}(K), u_{2} \in U_{w_{1}}^{+}(K), t \in T(K)$, s.t.,$g u_{1}=u_{1} u_{2} t$.

Goal of today's lecture: this is true when $K=\operatorname{Trop} \mathbb{Q}(a \oplus b=\min (a, b), a \odot b=a+b)$.
Exercise 0.1 Write the statement in lemma 0.1 explicitly for $G L_{3}(\operatorname{Trop} \mathbb{Q})$ and prove it directly.
Today:Mainly mathematical logic.
Reference:Tarski's principle and the elimination of quantifiers by Richard G.Swan[1].
Then we show that lemma 0.1 holds when $K=k_{>0}$ for any real closed field k. In particular, it holds for real Puiseux series. Applying base change, it then holds for $K=\operatorname{Trop} \mathbb{Q}$.

Let $f \in \mathbb{Z}\left[x_{1}, \cdots, x_{n}\right]$. We will regard f as a function over a field F.

Definition 0.1

An atomic predicate is of the form $f=0$ for field F or $f=0, f>0$ for ordered field F.

We have the logical connections.

1. disjunction $P \vee Q(\mathrm{P}$ or Q$)$;
2. conjunction $P \wedge Q(\mathrm{P}$ and Q$)$;
3. negation $P \neq Q($ not P$)$.

Example 0.1 P is $(f=0)$, then $\neg P$ is $(f \neq 0)$; P is $(f=0), Q$ is $(g=0)$, then $P \vee Q$ is $(f g=0)$; $P \Rightarrow Q$ is equivalent to $(\neq P) \vee Q$.

We have the Quantifiers: \forall, \exists

Definition 0.2

The set of elementary predicates is the smallest class containing the atomic predicates and close under \vee, \wedge, \neg and \forall, \exists. The set of quantlfier - free elementary predicates is the smallest class containing the atomic predicates and closed under $\vee, \wedge, \neg($ and no quantifier is used $)$.

Example 0.2 Let F be a field. $\operatorname{char}(F)=p$ is equivalent to $p=0$ (quantifier-free) or $(\forall x)[p x=0]$ (not quantifier-free) and both are elementary. $\quad \operatorname{char}(F)=0$ is equivalent to $\neg[p=0]$ for all p, i.e. $\quad(\neg[2=$ $0]) \wedge(\neg[3=0]) \wedge \cdots$.

The field we will consider here are algebraically closedfield and real closed field.

Definition 0.3

A field F is called real(or formally real) if for any finite sequence $a_{i} \in F, \sum a_{i}^{2}=0$ if and only if $a_{i}=0 . F$ is called real closed if it is real and no proper algebraic extention of F is real.

Fact Any real field has a real closure (i.e. an algebraic extension that is real closed). This real closure is unique up to isomorphism.

Lemma 0.2

Let F be a real field. Let $a \in F, a \neq 0$, then $F(\sqrt{a})$ is real iff $-a$ is not a sum of squares in F.

Proof $\quad \Rightarrow$ "If $-a=\sum c_{i}^{2}, a_{i} \in F$. Then in $F(\sqrt{a})$, we have $(\sqrt{a})^{2}+\sum c_{i}^{2}=0$. Since $F(\sqrt{a})$ is real, $\sqrt{a}=0 \Rightarrow a=0$.
$" \Leftarrow$ " If $F(\sqrt{a})$ is not real, then $\exists x_{i}, y_{i} \in F$, s.t. $\quad \sum\left(x_{i}+y_{i} \sqrt{a}\right)^{2}=0 . \quad$ So $\quad \sum x_{i}^{2}+\sum y_{i}^{2} a=0$ and $\sum x_{i} y_{i} \sqrt{a}=0$. Since $\left(x_{i}, y_{i}\right)$ not all zero, y_{i} are not all 0 . (otherwise $\sum x_{i}^{2}=0$, so $x_{i}=0$). Thus $-a=-\sum x_{i}^{2} / \sum y_{i}^{2}=\left(\sum x_{i}^{2}\right)\left(\sum y_{i}^{2}\right) /\left(\sum y_{i}^{2}\right)^{2}$.

Definition 0.4

Two elementary predicates $P\left(x_{1}, \cdots, x_{n}\right)$ and $Q\left(x_{1}, \cdots, x_{n}\right)$ are equinalent in the theory of algebraically closed fields(resp.real closed field) if for any algebraically closed fields(resp.real closed field) F and $a_{1}, \cdots, a_{n} \in F, P\left(a_{1}, \cdots, a_{n}\right)$ is true iff $Q\left(x_{1}, \cdots, x_{n}\right)$ is true.

Example $0.3\left[x^{2}>9\right]$ and $\left[x^{4}>0\right]$ are equivalent in the theory of real closed field.
Example 0.4 Over $\mathbb{R}, \quad[x \geq 0]$ is equivalent to $(\exists y)\left[x=y^{2}\right]$. Over $\mathbb{Q},[x \geqslant 0]$ is not equivalent to $(\exists y)\left(x=y^{2}\right)$.

Principle 0.1 (Tarski principle)

An elementary predicate in the theory of algebraically closed field(resp. real) is equivalent to a quantifier - free elementary predicate.

A simple observation is that let F, F^{\prime} be an algebraically closed field(resp. real closed field), $F \subseteq F^{\prime}$, then for any atomic predicate $P(f=0)$ or $P(f>0)$ and for $a_{1}, \cdots, a_{n} \in F, P\left(a_{1}, \cdots, a_{n}\right)$ is true in F iff it is true in F^{\prime} (Here we may replace $f>0$ by $f=g^{2}, g \neq 0$).

A consequence of Tarski principle: Let S be an elementary statement/predicate in the theory of algebraically closed field(resp. real closed field). If it is true for one algebraically closed field(resp. real closed field), then it is true for all algebraically closed field(resp. real closed field).

Here is an application.

Theorem 0.1 (Hilbert's 17th problem, proved by Artin)

Let $f \in \mathbb{R}\left[x_{1}, \cdots, x_{n}\right]$, if $f\left(a_{1}, \cdots, a_{n}\right) \geq 0, \forall a_{1}, \cdots, a_{n} \in \mathbb{R}$, then f is a sum of squares in the quotient field $\mathbb{R}\left(x_{1}, \cdots, x_{n}\right)$.

Proof Set $F=\mathbb{R}$, consider $F(\sqrt{-f})$. If f is not a sum of squares, then $F(\sqrt{-f})$ is real. Let K be a real closure of $F(\sqrt{-f})$. Then $-f=(\sqrt{f})^{2}$ in k. So $P:\left(\exists x_{1}\right)\left(\exists x_{2}\right) \cdots\left(\exists x_{n}\right)\left[f\left(x_{1}, \cdots x_{n}\right)<0\right]$ is true for K. By Tarski principle, P is true for \mathbb{R}. i.e. $\exists a_{1}, \cdots, a_{n}, f\left(a_{1}, \cdots, a_{n}\right)<0$. Contradiction.

Another application is the generalization of lemma 0.1

Proposition 0.1

Let k be a real closed field and $K=k_{>0}$. For any $w_{1}, w_{2} \in W$ with $\operatorname{supp}\left(w_{1}\right)=\operatorname{supp}\left(w_{2}\right)=I$, and $g \in U_{w_{1}}^{+}(K) T(K) U_{w_{2}}^{-}(K), \exists u_{1} \in U_{w_{0}}^{-}(K), u_{2} \in U_{w_{1}}^{+}(K), t \in T(K)$, s.t. , $g u_{1}=u_{1} u_{2} t$.

Proof Write $g u_{1}=u_{1} u_{2}$ t as elementary predicates. We identify $U_{w_{0}}^{-}(K) \simeq K^{l\left(w_{0}\right)}, U_{w_{1}}^{+}(K) \simeq K^{l\left(w_{1}\right)}, T(K) \simeq$ $K^{\operatorname{rank}(G)}$. Then both sides are contained in $U_{w_{0}}^{-}(K) T(K) U_{w_{1}}^{+}(K) \simeq K^{l\left(w_{0}\right)+l\left(w_{1}\right)+\operatorname{rank}(G)}$. Under this identification

$$
\begin{aligned}
K^{*} \simeq U_{w_{0}}^{-}(K) & \longrightarrow U_{\omega_{0}}^{-}(K) T(K) U_{w_{1}}^{+}(K) \simeq K^{*} \\
u_{1} & \longmapsto g u_{1}
\end{aligned}
$$

The map $K^{*} \rightarrow K^{*}$ involves the quotient of $\mathbb{Z}\left[x_{1}, \cdots\right]$. Similarly,

$$
\begin{aligned}
K^{*} \simeq U_{w_{0}}^{-}(K) \times U_{w_{1}}^{+}(K) \times T(K) & \longrightarrow U_{\omega_{0}}^{-}(K) T(K) U_{w_{1}}^{+}(K) \simeq K^{*} \\
\left(u_{1}, u_{2}, t\right) & \longmapsto u_{1} t u_{2}
\end{aligned}
$$

and the map involves the quotient of $\mathbb{Z}\left[x_{1}, \cdots\right]$.
Note that

$$
f_{1} / f_{2}=g_{1} / g_{2} \Leftrightarrow\left[f_{2} \neq 0\right] \wedge\left[g_{2} \neq 0\right] \wedge\left[f_{1} q_{2}=f_{2} g_{1}\right]
$$

So $g u_{1}=u_{1} u_{2} t$ is equivalent to $\left(\exists x_{1}\right) \cdots\left(\exists x_{l\left(w_{0}\right)+l\left(w_{1}\right)+\operatorname{rank}(G)}\right)[P$ (elementary predicates from the coordinatewise equalitites $\left.\left.f_{1} / f_{2}=g_{1} / g_{2}\right)\right]$.

We proved last week that the above statement is true for \mathbb{R}. So by Tarski principle, it is true for the real closed field k. So Since $\left[x_{1}>0\right] \wedge \ldots$, all the x_{i} are in $K=k_{>0}$. So we get a solution u_{1}, u_{2}, t over K.
Remark For the uniqueness, we may consider the statement $\left.\neg\left(\left(\exists x_{i}\right) \cdots\right) \wedge\left(\left(\exists x_{i}^{\prime}\right) \cdots\right) \wedge\left(\left[x_{1} \neq x_{1}^{\prime}\right] \vee\left[x_{2} \neq x_{2}^{\prime}\right] \vee \cdots\right)\right)$.
Now we have the semifield homomorphism

$$
\operatorname{deg}: K_{1}=\mathbb{R}\{\{t\}\}_{>0} \rightarrow K_{2}=\text { Trop } \mathbb{Q}
$$

$\mathbb{R}\{\{t\}\}_{>0}$ is the positive part of the real Puiseus series $\mathbb{R}\{\{t\}\}$ which is real closed.
For $g \in U_{w_{1}}^{+}\left(K_{2}\right) T\left(K_{2}\right) U_{w_{2}}^{-}\left(K_{2}\right)$, there exists $g^{\prime} \in U_{w_{1}}^{+}\left(K_{1}\right) T\left(K_{1}\right) U_{w_{2}}^{-}\left(K_{1}\right)$ such that $\operatorname{deg}\left(g^{\prime}\right)=g$ since $K_{1} \rightarrow K_{2}$ is surjective. By the theorem above, $\exists u_{1}^{\prime} \in U_{w_{0}}\left(K_{1}\right), u_{2}^{\prime} \in U_{w_{1}}^{+}\left(K_{1}\right), t^{\prime} \in T\left(K_{1}\right)$ such that $g^{\prime} u_{1}^{\prime}=u_{1}^{\prime} u_{2}^{\prime} t^{\prime}$. Let $u_{1}=\operatorname{deg}\left(u_{1}^{\prime}\right), u_{2}=\operatorname{deg}\left(u_{2}^{\prime}\right), t=\operatorname{deg}\left(t^{\prime}\right)$. Then $g u_{1}=u_{1} u_{2} t$.
Remark Tarski principle shows the existence, but not the uniqueness. In fact, the uniqueness of $\left(u_{1}, u_{2}, t\right)$ s.t. $g u_{1}=u_{1} u_{2} t$ fails over $\operatorname{Trop} \mathbb{Q}$ (even for GL_{2}).

In the following we give a sketch of the prinf for Tarski principle for algebraically closed field. For real closed field, this is proved in a similar way, but more involved in §9[1].

1. It suffices to eliminate one quantifier at one time. Also $(\forall x)[P(x)]$ is equivalent to $\neg(\exists x)(\neg P(x))$ So we mainly consider the quentifier \exists. (not \forall.)
2. Any quantifier-free elementary predicate P is equivalent to $\forall\left(P_{i}\right)$, where $P_{i}=\wedge B_{j}$ and B_{j} is of the form A_{j} or $\neg A_{j}$ for atomic A_{j}.
This is done using basic logic relations such as $\left(B_{1} \vee B_{2}\right) \wedge\left(B_{3} \vee B_{4}\right)=\left(B_{1} \wedge B_{3}\right) \vee\left(B_{1} \wedge B_{4}\right) \vee$ $\left(B_{2} \wedge B_{3}\right) \vee\left(B_{2} \wedge B_{4}\right)$.
Upshot: it suffices to consider the predicate of the form $(\exists x) \quad\left[f_{1}=0 \wedge f_{2}=0 \wedge \cdots \wedge g_{1} \neq 0 \wedge g_{2} \neq 0 \wedge \cdots\right]$. Note that f, g are polynomials in x, with coeffients as polynomials for other varlables. Thus in general, we can not reduce to monic polynomials.
3. Pseudo-monic form (w.r.t. x) is of the form $[c \neq 0] \wedge[Q(x)]$, where c is a polynomial not involving x, and is divisible by all the leading coefficients of all polynomials in $Q(x)$.
Upshot: Any quantifier-free predicate is equivalent to $\vee P_{i}$, where P_{i} are quantifier-free pseudo-monic predicate.
4. Euclidean algorithm (and induction on degree of n)§7[1].
5. Over algebraically closed field, the pseudo monic form $(\exists x)[c \neq 0 \wedge g \neq 0]$ is equivalent to $c \neq 0$ if c does not involve x. And then to prove the pseudo-monic form $(\exists x)[c \neq 0 \wedge f=0 \wedge g \neq 0] \Leftrightarrow \mathrm{a}$ quantifier-free predicate.

Bibliography

[1] R Swan. Tarski's Principle and the elimination of quantifiers.

