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Previously, we consider K = R>0, a semifield. We have

Lemma 0.1

♡

Let K = R>0. For any w1, w2 ∈ W with supp(w1) = supp(w2) = I , and g ∈
U+
w1
(K)T (K)U−

w2
(K), ∃u1 ∈ U−

w0
(K), u2 ∈ U+

w1
(K), t ∈ T (K), s.t. , gu1 = u1u2t.

Goal of today’s lecture: this is true when K = TropQ (a⊕ b = min(a, b), a⊙ b = a+ b).
� Exercise 0.1 Write the statement in lemma 0.1 explicitly for GL3(TropQ) and prove it directly.

Today:Mainly mathematical logic.
Reference:Tarski’s principle and the elimination of quantifiers by Richard G.Swan[1].
Then we show that lemma 0.1 holds when K = k>0 for any real closed field k. In particular, it holds for

real Puiseux series. Applying base change, it then holds for K = TropQ.
Let f ∈ Z[x1, · · · , xn]. We will regard f as a function over a field F .

Definition 0.1

♣An atomic predicate is of the form f = 0 for field F or f = 0, f > 0 for ordered field F.

We have the logical connections.
1. disjunction P ∨Q(P or Q);
2. conjunction P ∧Q(P and Q);
3. negation P ̸= Q(not P).

Example 0.1 P is (f = 0), then ¬P is (f ̸= 0); P is (f = 0),Q is (g = 0), then P ∨Q is (fg = 0); P ⇒ Q

is equivalent to (̸= P ) ∨Q.
We have the Quantifiers:∀,∃

Definition 0.2

♣

The set of elementary predicates is the smallest class containing the atomic predicates and close under
∨,∧,¬ and ∀, ∃. The set of quantlfier - free elementary predicates is the smallest class containing the
atomic predicates and closed under ∨,∧,¬ (and no quantifier is used).

Example 0.2 Let F be a field. char(F ) = p is equivalent to p = 0(quantifier-free) or (∀x)[px = 0](not
quantifier-free) and both are elementary. char(F ) = 0 is equivalent to ¬[p = 0] for all p, i.e. (¬[2 =

0]) ∧ (¬[3 = 0]) ∧ · · · .
The field we will consider here are algebraically closedfield and real closed field.

Definition 0.3

♣

A field F is called real(or formally real) if for any finite sequence ai ∈ F ,
∑

a2i = 0 if and only if
ai = 0. F is called real closed if it is real and no proper algebraic extention of F is real.

Fact Any real field has a real closure (i.e. an algebraic extension that is real closed). This real closure is unique
up to isomorphism.

Lemma 0.2

♡Let F be a real field. Let a ∈ F, a ̸= 0, then F (
√
a) is real iff −a is not a sum of squares in F .

Proof "⇒"If −a =
∑

c2i , ai ∈ F . Then in F (
√
a), we have (

√
a)2 +

∑
c2i = 0. Since F (

√
a) is real,

√
a = 0 ⇒ a = 0.



"⇐" If F (
√
a) is not real, then ∃xi, yi ∈ F , s.t.

∑
(xi + yi

√
a)

2
= 0. So

∑
x2i +

∑
y2i a = 0

and
∑

xiyi
√
a = 0. Since (xi, yi) not all zero, yi are not all 0. (otherwise

∑
x2i = 0, so xi = 0

)
. Thus

−a = −
∑

x2i /
∑

y2i =
(∑

x2i
) (∑

y2i
)
/
(∑

y2i
)2. ■

Definition 0.4

♣

Two elementary predicates P (x1, · · · , xn) and Q (x1, · · · , xn) are equinalent in the theory of alge-
braically closed fields(resp.real closed field) if for any algebraically closed fields(resp.real closed field)
F and a1, · · · , an ∈ F, P (a1, · · · , an) is true iff Q (x1, · · · , xn) is true.

Example 0.3
[
x2 > 9

]
and

[
x4 > 0

]
are equivalent in the theory of real closed field.

Example 0.4 Over R, [x ≥ 0] is equivalent to (∃y)
[
x = y2

]
. Over Q, [x ⩾ 0] is not equivalent to

(∃y)
(
x = y2

)
.

Principle 0.1 (Tarski principle)

♠

An elementary predicate in the theory of algebraically closed field(resp. real) is equivalent to a quantifier
- free elementary predicate.

A simple observation is that let F, F ′ be an algebraically closed field(resp. real closed field), F ⊆ F ′, then
for any atomic predicate P (f = 0) or P (f > 0) and for a1, · · · , an ∈ F , P (a1, · · · , an) is true in F iff it is
true in F ′ (Here we may replace f > 0 by f = g2, g ̸= 0).

A consequence of Tarski principle: LetS be an elementary statement/predicate in the theory of algebraically
closed field(resp. real closed field). If it is true for one algebraically closed field(resp. real closed field), then it
is true for all algebraically closed field(resp. real closed field).

Here is an application.

Theorem 0.1 (Hilbert’s 17th problem, proved by Artin)

♡

Let f ∈ R[x1, · · · , xn], if f(a1, · · · , an) ≥ 0, ∀a1, · · · , an ∈ R, then f is a sum of squares in the quotient
field R(x1, · · · , xn).

Proof Set F = R, consider F (
√
−f). If f is not a sum of squares, then F (

√
−f) is real. Let K be a real

closure of F (
√
−f). Then −f = (

√
f)2 in k. So P : (∃x1) (∃x2) · · · (∃xn) [f (x1, · · ·xn) < 0] is true for K.

By Tarski principle, P is true for R. i.e. ∃a1, · · · , an, f (a1, · · · , an) < 0. Contradiction. ■

Another application is the generalization of lemma 0.1

Proposition 0.1

♠

Let k be a real closed field and K = k>0. For any w1, w2 ∈ W with supp(w1) = supp(w2) = I , and
g ∈ U+

w1
(K)T (K)U−

w2
(K), ∃u1 ∈ U−

w0
(K), u2 ∈ U+

w1
(K), t ∈ T (K), s.t. , gu1 = u1u2t.

Proof Write gu1 = u1u2t as elementary predicates. We identifyU−
w0
(K) ≃ K l(w0), U+

w1
(K) ≃ K l(w1), T (K) ≃

Krank(G). Then both sides are contained in U−
w0
(K)T (K)U+

w1
(K) ≃ K l(w0)+l(w1)+rank(G). Under this identi-

fication
K∗ ≃ U−

w0
(K) −→ U−

ω0
(K)T (K)U+

w1
(K) ≃ K∗

u1 7−→ gu1
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The map K∗ → K∗ involves the quotient of Z[x1, · · · ]. Similarly,

K∗ ≃ U−
w0
(K)× U+

w1
(K)× T (K) −→ U−

ω0
(K)T (K)U+

w1
(K) ≃ K∗

(u1, u2, t) 7−→ u1tu2

and the map involves the quotient of Z[x1, · · · ].
Note that

f1/f2 = g1/g2 ⇔ [f2 ̸= 0] ∧ [g2 ̸= 0] ∧ [f1q2 = f2g1]

So gu1 = u1u2t is equivalent to (∃x1) · · · (∃xl(w0)+l(w1)+rank(G))[P (elementary predicates from the coordinate-
wise equalitites f1/f2 = g1/g2)].

We proved last week that the above statement is true for R. So by Tarski principle, it is true for the real
closed field k. So Since [x1 > 0] ∧ . . ., all the xi are in K = k>0. So we get a solution u1, u2, t over K. ■

Remark For the uniqueness, we may consider the statement¬ ((∃xi) · · · )∧((∃x′i) · · · )∧ ([x1 ̸= x′1] ∨ [x2 ̸= x′2] ∨ · · · )).
Now we have the semifield homomorphism

deg : K1 = R{{t}}>0 → K2 = TropQ

R{{t}}>0 is the positive part of the real Puiseus series R{{t}} which is real closed.
For g ∈ U+

w1
(K2)T (K2)U

−
w2
(K2), there exists g′ ∈ U+

w1
(K1)T (K1)U

−
w2
(K1) such that deg(g′) = g since

K1 → K2 is surjective. By the theorem above, ∃u′1 ∈ Uw0 (K1) , u
′
2 ∈ U+

w1
(K1) , t

′ ∈ T (K1) such that
g′u′1 = u′1u

′
2t

′. Let u1 = deg (u′1) , u2 = deg (u′2) , t = deg (t′). Then gu1 = u1u2t.
Remark Tarski principle shows the existence, but not the uniqueness. In fact, the uniqueness of (u1, u2, t) s.t.
gu1 = u1u2t fails over TropQ (even for GL2 ).

In the following we give a sketch of the prinf for Tarski principle for algebraically closed field. For real
closed field, this is proved in a similar way, but more involved in §9[1].

1. It suffices to eliminate one quantifier at one time. Also (∀x)[P (x)] is equivalent to ¬(∃x)(¬P (x)) So we
mainly consider the quentifier ∃. (not ∀.)

2. Any quantifier-free elementary predicate P is equivalent to ∀ (Pi), where Pi = ∧Bj and Bj is of the
form Aj or ¬Aj for atomic Aj .
This is done using basic logic relations such as (B1 ∨B2) ∧ (B3 ∨B4) = (B1 ∧B3) ∨ (B1 ∧B4) ∨
(B2 ∧B3) ∨ (B2 ∧B4).
Upshot: it suffices to consider the predicate of the form (∃x) [f1 = 0 ∧ f2 = 0 ∧ · · · ∧ g1 ̸= 0 ∧ g2 ̸= 0 ∧ · · · ].
Note that f, g are polynomials in x, with coeffients as polynomials for other varlables. Thus in general,
we can not reduce to monic polynomials.

3. Pseudo-monic form (w.r.t. x ) is of the form [c ̸= 0] ∧ [Q(x)], where c is a polynomial not involving x,
and is divisible by all the leading coefficients of all polynomials in Q(x).
Upshot: Any quantifier-free predicate is equivalent to ∨Pi, where Pi are quantifier-free pseudo-monic
predicate.

4. Euclidean algorithm (and induction on degree of n)§7[1].
5. Over algebraically closed field, the pseudo monic form (∃x) [c ̸= 0 ∧ g ̸= 0] is equivalent to c ̸= 0 if

c does not involve x. And then to prove the pseudo-monic form (∃x)[c ̸= 0 ∧ f = 0 ∧ g ̸= 0] ⇔ a
quantifier-free predicate.
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