Math4230 Exercise 9 Solution

1. Suppose x^{*} is a local minimum which is not global. Then there exists \bar{x} such that $f(\bar{x})<f\left(x^{*}\right)$. For $\alpha \in(0,1)$,

$$
f\left(\alpha x^{*}+(1-\alpha) \bar{x}\right) \leq \alpha f\left(x^{*}\right)+(1-\alpha) f(\bar{x})<f\left(x^{*}\right)
$$

This contradicts the local minimality of x^{*}.
2. Suppose x^{*} is a global minimum of f. Let $x \in \mathbb{R}^{n}$ and $x \neq x^{*}$. Then

$$
f\left(x^{*}\right) \leq f\left(\frac{1}{2}\left(x+x^{*}\right)\right)<\frac{1}{2}\left(f(x)+f\left(x^{*}\right)\right)
$$

Hence, $f\left(x^{*}\right)<f(x)$. So x^{*} is the unique global minimum.
3. (a) Suppose x^{*} minimizes f over X. Let $y \in Y$. Then for all $x \in X$, $f_{c}\left(x^{*}\right)=f\left(x^{*}\right) \leq f(x) \leq f(y)+L\|y-x\|<f(y)+c\|y-x\|$
Taking infinmum over X, we have $f_{c}\left(x^{*}\right) \leq f_{c}(y)$. So x^{*} minimizes f_{c} over Y.
(b) Suppose $x^{*} \notin X$ minimizes f_{c} over Y. Since X is closed, there exists \tilde{x} such that $\left\|\tilde{x}-x^{*}\right\|=\inf _{\bar{x} \in X}\left\|\bar{x}-x^{*}\right\|$. Then $f_{c}\left(x^{*}\right)=f\left(x^{*}\right)+c\left\|\tilde{x}-x^{*}\right\|>f\left(x^{*}\right)+L\left\|\tilde{x}-x^{*}\right\| \geq f(\tilde{x})=f_{c}(\tilde{x})$

This contradicts the minimality of x^{*}. Hence, $x^{*} \in X$.

