Math4230 Exercise 9 Solution

1. Suppose x^* is a local minimum which is not global. Then there exists \overline{x} such that $f(\overline{x}) < f(x^*)$. For $\alpha \in (0, 1)$,

 $f(\alpha x^* + (1 - \alpha)\overline{x}) \le \alpha f(x^*) + (1 - \alpha)f(\overline{x}) < f(x^*)$

This contradicts the local minimality of x^* .

2. Suppose x^* is a global minimum of f. Let $x \in \mathbb{R}^n$ and $x \neq x^*$. Then

$$f(x^*) \le f(\frac{1}{2}(x+x^*)) < \frac{1}{2}(f(x)+f(x^*)).$$

Hence, $f(x^*) < f(x)$. So x^* is the unique global minimum.

- 3. (a) Suppose x^* minimizes f over X. Let $y \in Y$. Then for all $x \in X$, $f_c(x^*) = f(x^*) \le f(x) \le f(y) + L||y - x|| < f(y) + c||y - x||$ Taking infimum over X, we have $f_c(x^*) \le f_c(y)$. So x^* minimizes f_c over Y.
 - (b) Suppose $x^* \notin X$ minimizes f_c over Y. Since X is closed, there exists \tilde{x} such that $||\tilde{x} x^*|| = \inf_{\overline{x} \in X} ||\overline{x} x^*||$. Then

$$f_c(x^*) = f(x^*) + c||\tilde{x} - x^*|| > f(x^*) + L||\tilde{x} - x^*|| \ge f(\tilde{x}) = f_c(\tilde{x})$$

This contradicts the minimality of x^* . Hence, $x^* \in X$.