Math4230 Exercise 9

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function. Suppose x^{*} is a local minimizer of f, show that it is also a global minimizer.
2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a strictly convex function. Suppose f has a global minimizer, show that it is unique.
3. Let $f: Y \rightarrow \mathbb{R}$ be a Lipschitz continuous function with constant L. Let X be a nonempty closed subset of Y, and c be a number such that $c>L$.
(a) Show that if x^{*} minimizes f over X, then x^{*} minimzes

$$
f_{c}(x)=f(x)+c \inf _{\bar{x} \in X}\|\bar{x}-x\|
$$

over Y.
(b) Show that if x^{*} minimizes $f_{c}(x)$ over Y, then $x^{*} \in X$, and hence x^{*} minimizes f over X.

