Math4230 Exercise 8 Solution

1. Suppose x^{*} is a minimizer of f, then $f(y) \geq f\left(x^{*}\right)=f\left(x^{*}\right)+\left\langle 0, y-x^{*}\right\rangle$ for all y. Hence $0 \in \partial f\left(x^{*}\right)$.
Conversely, suppose $0 \in \partial f\left(x^{*}\right)$. Then $f(y) \geq f\left(x^{*}\right)+\left\langle 0, y-x^{*}\right\rangle$ for all y. Hence, x^{*} is a minimizer of f.
2. Suppose $g \in \partial f(x)$. Let y be such that $y<x$. Then $f(y) \geq f(x)+g(y-x)$ Since $f(y) \leq f(x)$, we have $g(x-y) \geq 0$
3. (a) Since $f^{\prime}(x ; 0)=0$, the equality holds when $\lambda=0$.

So assume $\lambda>0$,
$f^{\prime}(x ; \lambda y)=\inf _{\alpha>0} \frac{f(x+\alpha \lambda y)-f(x)}{\alpha}=\lambda \inf _{\alpha>0} \frac{f(x+\alpha \lambda y)-f(x)}{\alpha \lambda}$
Hence $f^{\prime}(x ; \lambda y)=\lambda f^{\prime}(x ; y)$ by considering $\beta=\alpha \lambda$.
(b) Let y_{1}, y_{2} be two points.

Let $\lambda \in(0,1), y_{\lambda}=\lambda y_{1}+(1-\lambda) y_{2}$.
By convexity of $f, f\left(x+\alpha y_{\lambda}\right) \leq \lambda f\left(x+\alpha y_{1}\right)+(1-\lambda) f\left(x+\alpha y_{2}\right)$. Hence,

$$
\frac{f\left(x+\alpha y_{\lambda}\right)-f(x)}{\alpha} \leq \lambda \frac{f\left(x+\alpha y_{1}\right)-f(x)}{\alpha}+(1-\lambda) \frac{f\left(x+\alpha y_{2}\right)-f(x)}{\alpha}
$$

Since the difference quotient is increasing as α increases, we can replace α by some $\alpha_{1}, \alpha_{2} \geq \alpha$ on the right hand side. So

$$
\frac{f\left(x+\alpha y_{\lambda}\right)-f(x)}{\alpha} \leq \lambda \frac{f\left(x+\alpha_{1} y_{1}\right)-f(x)}{\alpha_{1}}+(1-\lambda) \frac{f\left(x+\alpha_{2} y_{2}\right)-f(x)}{\alpha_{2}}
$$

Taking infimum over α, and then α_{1}, α_{2} we have

$$
f^{\prime}\left(x ; y_{\lambda}\right) \leq \lambda f^{\prime}\left(x ; y_{1}\right)+(1-\lambda) f^{\prime}\left(x ; y_{2}\right)
$$

(c) $f^{\prime}\left(x ; \frac{1}{2} y+\frac{1}{2}(-y)\right)=f^{\prime}(x ; 0)=0$.

But $f^{\prime}(x ;$.$) is convex, so$

$$
0 \leq \frac{1}{2} f^{\prime}(x, y)+\frac{1}{2} f^{\prime}(x ;-y)
$$

Hence $-f^{\prime}(x ;-y) \leq f^{\prime}(x ; y)$.

