Math4230 Exercise 8 Solution

- 1. Suppose x^* is a minimizer of f, then $f(y) \ge f(x^*) = f(x^*) + \langle 0, y x^* \rangle$ for all y. Hence $0 \in \partial f(x^*)$. Conversely, suppose $0 \in \partial f(x^*)$. Then $f(y) \ge f(x^*) + \langle 0, y - x^* \rangle$ for all y. Hence, x^* is a minimizer of f.
- 2. Suppose $g \in \partial f(x)$. Let y be such that y < x. Then $f(y) \ge f(x) + g(y-x)$ Since $f(y) \le f(x)$, we have $g(x - y) \ge 0$
- 3. (a) Since f'(x; 0) = 0, the equality holds when $\lambda = 0$. So assume $\lambda > 0$,

$$f'(x;\lambda y) = \inf_{\alpha>0} \frac{f(x+\alpha\lambda y) - f(x)}{\alpha} = \lambda \inf_{\alpha>0} \frac{f(x+\alpha\lambda y) - f(x)}{\alpha\lambda}$$

Hence $f'(x;\lambda y) = \lambda f'(x;y)$ by considering $\beta = \alpha\lambda$.

(b) Let y_1, y_2 be two points. Let $\lambda \in (0, 1), y_{\lambda} = \lambda y_1 + (1 - \lambda)y_2$. By convexity of $f, f(x + \alpha y_{\lambda}) \leq \lambda f(x + \alpha y_1) + (1 - \lambda)f(x + \alpha y_2)$. Hence,

$$\frac{f(x + \alpha y_{\lambda}) - f(x)}{\alpha} \le \lambda \frac{f(x + \alpha y_1) - f(x)}{\alpha} + (1 - \lambda) \frac{f(x + \alpha y_2) - f(x)}{\alpha}$$

Since the difference quotient is increasing as α increases, we can replace α by some $\alpha_1, \alpha_2 \geq \alpha$ on the right hand side. So

$$\frac{f(x+\alpha y_{\lambda})-f(x)}{\alpha} \le \lambda \frac{f(x+\alpha_1 y_1)-f(x)}{\alpha_1} + (1-\lambda) \frac{f(x+\alpha_2 y_2)-f(x)}{\alpha_2}$$

Taking infimum over α , and then α_1, α_2 we have

$$f'(x; y_{\lambda}) \le \lambda f'(x; y_1) + (1 - \lambda)f'(x; y_2)$$

(c) $f'(x; \frac{1}{2}y + \frac{1}{2}(-y)) = f'(x; 0) = 0.$ But f'(x; .) is convex, so

$$0 \le \frac{1}{2}f'(x,y) + \frac{1}{2}f'(x;-y)$$

Hence $-f'(x; -y) \le f'(x; y)$.