Math4230 Exercise 8

- 1. Show that x^* is a minimizer of a function f if and only if $0 \in \partial f(x^*)$.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a nondecreasing convex function. Show that for all $x \in \mathbb{R}$, $g \ge 0$ if $g \in \partial f(x)$.
- 3. Let $f: \mathbb{R}^n \to (-\infty, \infty]$ be a convex function, let $x \in \text{dom}(f)$. Define

$$f'(x;y) = \inf_{\alpha > 0} \frac{f(x + \alpha y) - f(x)}{\alpha}$$

Show the following:

- (a) $f'(x; \lambda y) = \lambda \overline{f'}(x; y)$ for all $\lambda \ge 0$ and $y \in \mathbb{R}^n$.
- (b) f'(x; .) is convex.
- (c) $-f'(x;-y) \le f'(x;y)$ for all $y \in \mathbb{R}^n$.