Math4230 Exercise 8

1. Show that x^{*} is a minimizer of a function f if and only if $0 \in \partial f\left(x^{*}\right)$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a nondecreasing convex function.

Show that for all $x \in \mathbb{R}, g \geq 0$ if $g \in \partial f(x)$.
3. Let $f: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be a convex function, let $x \in \operatorname{dom}(f)$. Define

$$
f^{\prime}(x ; y)=\inf _{\alpha>0} \frac{f(x+\alpha y)-f(x)}{\alpha}
$$

Show the following:
(a) $f^{\prime}(x ; \lambda y)=\lambda f^{\prime}(x ; y)$ for all $\lambda \geq 0$ and $y \in \mathbb{R}^{n}$.
(b) $f^{\prime}(x ;$.) is convex.
(c) $-f^{\prime}(x ;-y) \leq f^{\prime}(x ; y)$ for all $y \in \mathbb{R}^{n}$.

